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ABSTRACT

Land use and land cover (LULC) change has been recognized as a key driver of global climate change by
influencing land surface processes. Being in constant change, river basins are always subjected to LULC
changes, especially decline in forest cover to give way for agricultural expansion, urbanization, indus-
trialization etc. We used on-screen digital interpretation technique to derive LULC maps from Landsat
images at three decadal intervals i.e., 1985, 1995 and 2005 of two major river basins of India. Rain-fed,
Mahanadi river basin (MRB) attributed to 55% agricultural area wherein glacier-fed, Brahmaputra river
basin (BRB) had only 16% area under agricultural land. Though conversion of forest land for agricultural
activities was the major LULC changes in both the basins, the rate was higher for BRB than MRB. While
water body increased in MRB could be primarily attributed to creation of reservoirs and aquaculture
farms; snow and ice melting attributed to creation of more water bodies in BRB. Scrub land acted as an
intermediate class for forest conversion to barren land in BRB, while direct conversion of scrub land to
waste land and crop land was seen in MRB. While habitation contributed primarily to LULC changes in
BRB, the proximity zones around habitat and other socio-economic drivers contributed to LULC change in
MRB. Comparing the predicted result with actual LULC of 2005, we obtained >97% modelling accuracy;
therefore it is expected that the Dyna-CLUE model has very well predicted the LULC for the year 2025.
The predicted LULC of 2025 and corresponding LULC changes in these two basins acting as early warning,
and with the past 2-decadal change analysis this study is believed to help the land use planners for
improved regional planning to create balanced ecosystem, especially in a changing climate.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

regulating and storing the fresh water for anthropogenic uses,
makes them multifunctional units in all perspectives i.e., hydro-

The role of river basins as repositories of natural, environmental logical, biophysical, socio-economic etc. (Dawei and Jingsheng,
and cultural resources along with capturing, channelling, 2001; Wagner et al, 2002). Being in a constant process of
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changes, river basins are always subjected to the forces carried out
in ecological, economic, social and cultural aspects i.e., the so called
‘driving forces’ of land use and land cover (LULC) change (Verburg
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regional and global climate change by influencing land surface
processes whose subsequent impact on water cycle; energy balance
and carbon cycle are realized and thus has an important implication
for various policies prescriptions at national and international level
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(Wang and Zhang, 2001; Lambin et al., 2003). Cumulatively the
LULC change, climate change and soil deterioration alters the hy-
drological cycle, and that progressively degrades ecosystem, de-
creases the quality of land resources, biodiversity and future of
agricultural productivity (Das et al., 2017; Bajocco et al., 2012;
Butchart et al., 2010; Dadhwal et al., 2010; Mishra, 2008).

LULC is interlinked with environmental and socio-economic
systems. The driver plays leading role in LULC changes, and are
derived from the interrelationship of the various elements such as
altitude, slope, aspect, soil type, precipitation etc. are grouped as
environmental; and population, literacy rate, household, drinking
water facility, medical facility, etc. as socioeconomic (Briassoulis,
2000). Boserup (2002) showed the positive and negative impact
of population on LULC as growing population might cause land
degradation in short term but can enhance innovation and inten-
sified agriculture by adopting conservation. The initiation of India's
'Green Revolution' to support a large population in terms of food
security and sustainable economic development has led to expan-
sion of agricultural area through widespread deforestation (Singh,
2000). Additionally, the rapid urbanization with the start of in-
dustrial revolution and globalization way back in 1970s has led to
the encroachment of grasslands, wetlands, forests etc. (Fazal, 2001).
Roy et al. (2015a) studied the decadal LULC changes in India during
1985, 1995 and 2005, and highlighted the loss of forest cover in
central and northeast India, increase of cropland area in western
India, growth of peri-urban area, and relative increase in planta-
tions. Road accessibility, population proximity and temperature rise
were found to be three major drivers of forest cover change in
Hindu Kush Himalayan region (Murthy et al., 2016).

Brahmaputra (BRB) and Mahanadi (MRB), the two major River
basins of India, hold huge population and have undergone severe
deforestation during last decades mainly due to dam constructions,
industrialization, urbanization and agricultural expansion in MRB;
and shifting cultivation, urbanization and river shifting in BRB (Roy
and Giriraj, 2008; Reddy et al., 2009). The Brahmaputra river is
characterized by its large flow, enormous sediment load as erosion
deposition problem, leading to continuous changes in channel
morphology and river course change. The interaction of anthro-
pogenic and natural system within two river basins is extremely
contrast, yet deforestation is their major means of land cover
change; thus, motivated to study and evaluate the land use fates
deforestation meets in the two river basins in a comparison mode.

The spatial arrangement of LULC can be identified and mapped
by aerial view of landscape or through remotely sensed satellite
images (Roy and Behera, 2003). Remote sensing with its synoptic
view, fast data acquisition and digital format suitable for computer
processing, is one of the most successful and reliable data source in
last few decades in recording spatio-temporal LULC change (Behera
and Kushwaha, 2002; Lambin et al., 2003). Landsat Multispectral
Scanner (MSS), Thematic Mapper (TM) and Enhanced Thematic
Mapper Plus (ETM+) data programme of NASA earth observation
have been broadly employed in LULC studies providing a nearly
continuous record of global land cover since 1972 focusing mainly
in forest and agricultural areas (Campbell, 2007; Cohen and
Goward, 2004).

Modelling of potential future LULC assigning a set of defined
conditions offers the opportunities to examine the probable
spatiotemporal changes at landscape level (Verburg et al., 2008;
Behera et al., 2012). These models incorporate human decision
making and environmental management policies while taking into
account the processes that drive LULC change (Parker et al., 2003;
Tang et al., 2009). Various modelling approach has been adopted
to study the LULC changes (Lambin et al., 2000; Agarwal et al.,
2002; Singh et al., 2015). Behera et al. (2012) have used CA-
Markov model for future prediction of LULC scenario in part of

the Mahanadi river basin, where they observed a significant gain in
built-up and agriculture land at the cost of deforestation. The
Conversion of Land Use and its Effects (CLUE) is a spatially explicit,
LULC change model simulates based on an empirical analysis of
location based suitability, preference and feature interactions at
spatio-temporal dimension. The different versions of the CLUE
model (CLUE, CLUE-s, Dyna-CLUE and CLUE-Scanner) are among
the most frequently used LULC models. Limited studies have been
carried out on LULC dynamics using the CLUE models in India,
especially in MRB and BRB.

We have attempted to map the LULC status of the two river
basins as Brahmaputra river basin (BRB) and Mahanadi river basin
(MRB) using a pre-defined classification scheme from satellite data
for the period of 1985, 1995 and 2005, following visual image
interpretation technique. Further, we analysed the decadal LULC
changes in these two along with the associated drivers of the cor-
responding years. We utilised a conversion model Dynamic Con-
version of Land Use and its Effects (Dyna-CLUE) to predict the 2005
LULC map using 1985 (T1) and 1995 (T2) LULC maps at decadal
scale with the corresponding drivers. This predicted 2005 LULC
map was matched with the satellite-derived original 2005 map.
Finally we used the drivers and satellite-derived LULC maps of 1985
(T1) and 2005 (T2) to predict the LULC map for the year 2025 at 20
years interval.

2. Study area
2.1. Mahanadi river basin

The study area MRB, one of the major river basins of India, sit-
uated on the eastern coast of the Bay of Bengal. Subarnarekha,
Brahmani and Baitarni River basins were considered together un-
der 'Mahanadi River basin' for the study (Fig. S1). These are rain-fed
river basins accommodate thick population, mostly covered by
agricultural land and forest. The basin covers mostly plains with an
elevation range of 1-1500 m. Mahanadi river starts from in central
Indian plateau of Chhattisgarh, flows eastwards through Odisha
state before it culminates in Bay of Bengal, with total length of
about 851 km. It lies between 16.8° N and 23.5° N latitude and 80.2°
E—88° E longitudes within elevation range of 196 m and 877 m.
Many dams, irrigation networks and barrages are present in the
basin, the most prominent of which is the Hirakud Dam, the largest
reservoir in Asia with 746 km? catchment area. During its traverse,
a number of tributaries join the river on both the flanks with 14
major tributaries, of which 12 join it upstream of Hirakud reservoir
and 2 in the downstream of it. The climate is tropical monsoon with
a south west monsoon during June and July. The annual rainfall is
1360 mm of which 86% (1170 mm) is contributed from the
monsoon season. The temperature ranges from a minimum of
4 °C—12 °C in winters to a maximum of 42 °C—45.5 °C in May. The
main soil types are red and yellow soil, mixed red and black soils.

2.2. Brahmaputra river basin

BRB is both glacier and rain fed basin, dominated with forest
cover and support relatively low population density. BRB covers
mostly the mountainous region with an elevation range of up to
8437 m. The Brahmaputra river originates from Himalayan Kailash
ranges and its basin spreads over four countries including China,
Bhutan, India and Bangladesh having a total area of nearly 5,
80,000 km?. The Indian area covered by this basin is nearly 6% of
the country's total geographic area, has been considered for study.
It extends from 21.5N-29.5N latitude and 88E—98E longitude,
occupying nearly 280288 km? (Fig. S1). The upper basin lying in the
Arunachal Pradesh and Nagaland states of India is mostly
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mountainous with narrow valleys where the river has a high
gradient of 16.8 m km~L The climate of the basin follows the
normal Indian pattern of four seasons as winter, summer, monsoon
and autumn. The weather is generally changed by the passage of
western disturbances across the region with relatively less rainfall
occurring in January and February along the hills. Overall, 66—85%
of the annual rainfall is contributed from the monsoon season and
20—30% contributions from pre-monsoon season (Sarma, 2005).
The mean temperature in the basin ranges from mean minimum of
15 °C—17 °Cduring January, to a mean maximum of 27.5 °C—30.0 °C
in July. The dominant soil type of the River basin is red loamy and
alluvial soil.

3. Methodology

The analysis was divided into three segments (i) LULC mapping
and change detection, (ii) Analysis of drivers (iii) LULC modelling.
Multi-temporal satellite data ie., Landsat MSS (multispectral
scanner) images for 1985 and 1995, and TM (Thematic Mapper)
data for 2005 were downloaded from United States Geological
Survey (USGS) portal (Table S1). Radiometric correction using im-
age enhancement techniques followed by geometric correction
were applied on the satellite data. All the data were transformed to
Universal Transverse Mercator (UTM) projection with WGS84 da-
tum. The mapping was done on 1:50,000 scale following two level
classification scheme of International Geosphere and Biosphere
Programme (IGBP) hierarchical classification system. Primarily, the
LULC vector map of 2005 was prepared with on screen digitization
using visual interpretation of satellite images. The vector LULC of
2005 was overlaid on the 1995 satellite data (Landsat TM) and the
polygons were modified where the changes had taken place to
prepare the LULC of 1995. Same procedure was repeated for the
preparation of 1985 LULC map by overlaying the vector LULC map
of 1995 on 1985 satellite data (Landsat MSS as provided by USGS:
http://glovis.usgs.gov). This protocol takes care of different spatial
resolution satellite data use (Roy et al, 2015a,b). Information
gathered from ground truthing, literature survey and other sup-
plementary sources were also utilised during interpretation. Ac-
curacy assessment was also done by taking randomly stratified
points for each class to assess the quality of the information
derived. We used 200 points with random distribution over each
class for evaluating classification accuracy of the LULC maps. The
ArcGIS 9.3 software was used for polygon editing; whereas inter-
pretation and accuracy assessment was done in ERDAS IMAGINE
9.2 software. The maps were further crossed to derive the changes
in LULC patterns using post-classification change detection approach.
This allowed us to quantify the changes of a particular LULC to
another LULC category by producing a change matrix.

3.1. Driver dataset

The driver datasets fall into two categories i.e., environmental
and socio-economic drivers that were further classified as primary
and secondary data (Table S1). All the primary driver datasets were
procured and projected to same coordinate system of UTM with
WGS84 datum.

3.1.1. Environmental drivers

Shuttle Radar Topographic Mission (SRTM) derived elevation
data available for the period of 2000 was used for all three time
periods owing to its relatively static nature. Slope and aspect were
calculated from elevation data, whereas the soil map on 1:1 million
scale made by the National Bureau of Soil Survey and Land Use
Planning (NBSS-LUP) was used directly. The total rainfall was
calculated by adding the daily rainfall of a year, while the annual

mean temperature was calculated by averaging; for 1985, 1995 and
2005 respectively (Table S1).

3.1.2. Socio-economical drivers

All socio-economic driver data was collected at district level
were added as attribute table into district vector file (Table S1). The
water body, deciduous and evergreen broad leaf forests were
masked out from the district vector file, considering these areas
were not holding socio-economic data. Population density was
calculated by division with respective district area in masked file.
Thereafter the masked out features were added into the district
vector file and converted into raster format.

A fishnet of 250 x 250 m? was created within the study area, in
which all the environmental and socio-economic data was appen-
ded. The majority classes falling in a grid were considered for the
grid value. This method was incorporated to standardize the spatial
domain overcomes the pixel shifts among various data. Again this
method was adopted because at course resolution the models
captures the relation between the land covers with the drivers,
where the aggregate impact of different factors and processes act
below resolution unable to capture (Verburg and Chen, 2000;
Walsh et al, 1999). Finally, the grided data was converted to
raster and normalized to a scale of ‘0 to 1’ for uniformity.

3.1.3. Analysis of LULC change with driver dynamics

To assess the impact of drivers on LULC change, the major
conversions changed >100 km? was chosen. As representative of
each category, we selected >300 random points from each LULC
change category and >200 random points where no-change took
place. The corresponding changes in drivers were calculated using
simple subtraction method. This change in driver data was
extracted for each representative point. A binary logistic regression
analysis was performed on the representative points to estimate
the statistical parameters i.e., B-coefficient and significance level in
Statistical Packages for the Social Sciences (SPSS) software.

3.2. Prediction of LULC change

For LULC modelling, the freely available Dyna-CLUE (Dynamic
Conversion of Land Use and its effects) model [CLUE version 2.0]
was used (Verburg and Overmars, 2009). This model works
depending on two basic distinct modules as spatial and non-
spatial; where the spatial module takes inputs as initial year LULC
map (starting year of simulation), restriction polices as study region
map (restricted, unrestricted and no-data area) and drivers that
cause LULC change; and the non-spatial module takes inputs as
land use requirements (LULC area statistics of all the years of
simulation: demand file), locational characteristics as relationship
of LULC with the drivers (for land use specific locational suitability),
land use type specific conversion settings as conversion matrix (the
type of land conversions that are allowed and not) and conversion
elasticity (how easy a land cover converts to other), and the
convergence criterion (to restrict the model over and under pre-
diction). The above-mentioned parameters create a set of condi-
tions and possibilities, based on which the model uses an iterative
procedure to find the probability of occupancy of each LULC class in
a pixel and substituted with the class having highest probability.

The demand of each land covers of the year 1985, 1995 and 2005
were obtained from the LULC maps and for the intermediate years,
interpolation and extrapolation techniques were applied.

The relation between the land cover and drivers were expressed
through B-coefficients, calculated using SPSS statistical tool using
binary logistic regression with forward conditional method and 20
iterations.

The binary logistic regression can be mathematically expressed
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as:

eﬂoﬂ@l X1+02X2+...+BnXn

POY) =9 T eBotBixi 822+ By

where, P is probability of Y occurring, i.e., presence or absence of a
particular land cover class, e is natural logarithm base, By is inter-
ception at y-axis, B1, B2, ..., Bn are line gradients or the regression
coefficient corresponds to the variables Xy, Xp, . X, (www.let.rug.
nl/nerbonne/teach/rema-stats-meth-seminar/presentations/
Binary-Logistic-Regression-Schueppert-2009.pdf).

Positive and negative p-coefficients associated with each driver
signify positive and negative correlations with corresponding
driver respectively. Positive Exp (B) indicates increase in the
probability as the value of driver increases and vice-versa.

The values in land use specific conversion matrix was defined in
form of 1 or O for possible and impossible conversions; for example,
cropland can be converted into built-up but the reverse is not
possible, hence in conversion matrix it will be assigned 1 and 0 for
the above two respective conversions.

In case of conversion elasticity, according to the model set up,
lower the value, easier to be converted to the other classes and vice-
versa; e.g., if conversion elasticity of cropland and forest were 0.3
and 0.6, to fulfill a demand, cropland would be converted more
easily than forest.

Convergence criterion takes the inputs as the allowed errors in
the average and maximum deviation between the demanded and
predicted area. More detailed information about these inputs and
model functionality are available minutely in the user's manual
(Verburg and Overmars, 2009).

With the decadal LULC maps and drivers (1985 and 1995 at 10
years interval), the LULC of 2005 was predicted and model per-
formance was evaluated and validated by comparing the visually
interpreted LULC of 2005. Since the map and driver data for 2015
was not available at the time we had to follow a trend of 10 years to
assess the efficacy of model. Once we were confident about the
results at 10 years trend (validation accuracy > 90%) we followed
the same methodology for 20 years trend i.e. 1985 to 2005 to
predict the LULC map of 2025. The area accuracy was computed by
comparing the predicted area with the observed area and the
spatial accuracy was computed incorporating each pixel of these
two data through the User's, Producer's, Overall accuracy and
Kappa value. After achieving satisfactory results, the model pro-
jection was continued with LULC maps and drivers of 1985 and
2005 to predict the LULC of 2025 at an interval of 20 years.

4. Results
4.1. Decadal (1985-1995-2005) LULC mapping

LULC maps with 13 classes were prepared for the years 1985,
1995 and 2005 using on-screen visual interpretation technique
(Table 1; Fig. 1a—c).

Cropland with nearly 55% area was the dominant land use in
MRB in all three decadal years i.e., 148147 km?, 148861 km? and
148892 km? for 1985, 1995 and 2005 respectively, whereas salt
pans occupied least area (Table 1; Fig. 1). Among forest classes
deciduous broad leaved forest occupied maximum area with
70408 km?, 69638 km?, and 69382 km? in 1985, 1995 and 2005
respectively. Mixed forest occupied nearly 4% of the total
geographic area showing 11233 km? 10948 km?, 10908 km?;
whereas scrubland occupied around 5% of the total area covering
15191 km?, 14925 km? and 14840 km? areas in 1985, 1995 and 2005
respectively. Very small fraction (percentage of the total area) of
areas was covered by mangrove, barrenland and aquaculture

(Table 1; Fig. 2a—c).

In BRB, evergreen broad leaved forest occupied maximum area
with 105014 km?, 104508 km? and 103787 km? contributing to
nearly 37% of total geographic area in 1985, 1995 and 2005
respectively (Table 1; Fig. 2a—b). Mixed forest class was observed as
the second largest land cover contributing to nearly 22%
(63285 km?, 62587 km?, and 61812 km? in 1985, 1995 and 2005
respectively). Cropland contributed to nearly 16% land use with
46525 km?, 48028 km? and 49242 km? areas in 1985, 1995 and
2005 respectively. Deciduous broad leaved forest, occupied nearly
3.4% area with 9529 km?, 9387 km?, 9074 km? and, snow and ice
9737 km?, 9765 km?, 9665 km? respectively. Very less area was
occupied by fallow and wasteland. Water body showed a spread of
nearly 4.5% area with 12565 km?, 12527 km? and 12731 km? in
1985, 1995 and 2005 respectively (Table 1; Fig. 2a—b).

To estimate the classification accuracy, error matrices were
generated by comparing the LULC with randomly stratified points
and high resolution Google Earth imagery for each class; have
shown >89% overall classification accuracy and >0.87 kappa accu-
racy (Tables S2a and S2b). This is beyond the minimum acceptable
level of accuracy (85%) for any further utility according to USGS.
Many classes showed up to absolute levels of producer's and user's
accuracy with the majority of them with >90% for both the basins
(Table S2). Lower producer's accuracy was observed for fallow land
(67%) in 1985, salt pan (50%) in 1995 in MRB; and wasteland (64%)
in 1985 in BRB.

4.2. Decadal land use and land cover change (LULC change)

We observed an overall decrease in forest classes during past 3
decades and an increase in built up, cropland classes in both the
river basins (Figs. 2a and 3a,b; Table 2a; Table S3) [few changes are
shown using satellite images (Figs. S2, S3 & S5)]. In MRB, among
forest classes the maximum decrease was observed in the decid-
uous broad leaved forest (1026 km?) followed by mixed forest class
(325 km?) during 1985—2005, of which the major decrease was
during 1985—1995 i.e., 770 km? and 285 km? respectively (Tables 2a
and S3a). Loss of 351 km? and 85 km?area in shrub land and barren
land respectively was observed from 1985 to 2005. 745 km? and
569 km? areas were increased in cropland and built-up class during
1985—2005, of which 714 km? and 340 km? increases were
observed during 1985—1995 for cropland and built-up respectively.
Most of the cropland expansions were converted from forest, fallow
land, scrubland, water body and waste lands; whereas the crop-
lands were mostly converted into built-up areas in its surroundings
(Figs. 2a and 3a, b; Table 2a). An addition of 360 km? area was
observed in water body from 1985 to 2005, whereas >100%
(127 km?) expansion in the aquaculture area was noticed during
1995—2005 compared to 1985 to 2005 mostly at the cost of crop
lands (Table 2a).

In BRB, the mixed forest suffered maximum loss with 1473 km?
and 700 km?, followed by evergreen broad leaved forest with
1227 km? and 775 km? during 1985-1995 and 1995 to 2005
respectively (Figs. 2b and 3c,d; Table 2b; Table S3b) [few changes
are shown using satellite images (Figs. S2, S3 & S5)]. In comparison,
deciduous broad leaved forest observed less deforestation around
455 km? during 1985—2005 and 313 km? during 1995—2005. On
the other hand, maximum increase was observed in cropland with
2717 km? followed by built-up with 231 km? during 1985—2005. In
contrast to MRB, built-up areas were mostly increased at the cost of
mixed forest; however the cropland areas shows similar type of
conversion as MRB, where forest classes with fallow land, grass
land, scrub land, water body and waste land were converted to
croplands. Most of croplands expansion from water body class were
observed within the flood plain of Brahmaputra river (Figs. 2b and
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Table 1

Area (in km?) estimates of various LULC classes for Mahanadi (MRB) and Brahmaputra (BRB) river basins.
LULC Class MRB BRB

1985 1995 2005 2025 1985 1995 2005 2025

Aquaculture (AQ)* 72.19 81.75 198.5 331.69 — — — —
Barren land (BL) 754.63 718.19 670.13 588.81 2112.25 2090.31 2150.56 2187.69
Built-up (BU) 3408.69 3749.44 3977.94 4549.69 3415.63 3523 3647.38 3886.38
Cropland (CL) 148147 148861 148892 149701 46524.9 48027.8 49242.1 51916.5
Deciduous broad leaved forest (DBF) 70408.3 69637.7 69382.4 68339.3 9529.25 9386.44 9074.25 8597.94
Evergreen broad leaved forest (EBF)® — - — — 105014 104508 103787 102500
Fallow land (FL) 5204.69 5059.13 5065.81 4922.75 151.5 149.13 156.06 166
Grass land (GL)b — — — — 8808.44 8632.44 8692.38 8577.69
Mixed forest (MF) 11233.2 10947.6 10908.3 10574.7 63285.4 62586.9 618124 60279.3
Mangrove (MG) ? 220.56 199.06 195.63 170.19 — — - -
Plantation (PL) 3404.13 3420.31 3503.54 3599.81 8213.44 8179.56 8196.75 8189.19
Saltpan (SP) ? 15191.4 14924.8 14839.8 14489.8 — — — —
Scrub land (SL) 22 22.06 22.75 24.31 9736.5 9765.13 9665.44 9592.06
Snow & Ice (Sl)b — - - — 10679.4 10649.8 10852.9 110103
Water body (WB) 7276.88 7607.75 7637.38 7974.25 12564.9 12527.3 12730.8 13078.6
Waste land (WL) 1132.06 1246.69 1181.81 1209.44 253.25 263.69 280.94 307.69

(Classes are available in MRB? and BRB® only).
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Fig. 1. Classified LULC map of MRB and BRB for the year (a) 1985 (b) 1995 (c) 2005; and (d) predicted- 2005 (Classes are available in BRB* and MRB* only).

3c¢,d; Table 2b; Table S3b). The interclass conversion of cropland
and water body was mostly due to frequent shifts of course of
Brahmaputra river.

4.2.1. Comparison of the modelled LULC map of 2005 with actual
LULC map of 2005

To validate the modelling accuracy, the LULC of 2005 was pre-
dicted using the LULC maps and drivers of 1985 and 1995; and
validated with the visually interpreted LULC map of 2005 (Fig. 1c
and d). The predicted LULC map of 2005 showed a very close
agreement with the reference map of 2005 (Tables S4a and b). We
received 98% overall accuracy (kappa accuracy of 0.97) in MRB
(Table S4a) and 97% overall accuracy (kappa accuracy of 0.96) in

BRB (Table S4b). The class-wise accuracy varied with homogeneous
classes (forest) having higher matching than heterogeneous classes
(cropland and wasteland). With satisfied modeling accuracy, the
LULC map for the year 2025 was predicted using the LULC maps of
1985 and 2005 with corresponding drivers keeping 20 years
interval.

4.3. Analysis of drivers

All the socioeconomic drivers showed increasing trend which
are directly proportional to the deforestation and cropland
expansion (Fig. S4). Distance to built-up area, distance to forest and
distance to water body demonstrated the role of proximity with
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Fig. 2. Bar chart showing change in LULC area estimates during 1985—1995, 1995—2005 and 2005—2025 for (a) MRB and (b) BRB.
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Fig. 3. (i) Loss and (ii) Gain maps for major classes of MRB during (a) 1985—2005, (b) 2005—2025 and BRB during (c) 1985—2005, (d) 2005—2025 (class is available in MRB* and

BRB* only) Classes with >200 km? loss and gain area are only shown in maps.

decadal variation in LULC change.

In MRB, as expected the highest correlation was observed for
deciduous broad leaved forest, mixed forest, mangrove and water
body classes with distance drivers i.e., distance to built-up, distance
to forest and distance to water body respectively, showing negative
relationship (i.e., —673.83, —313.58, —497.21, —735.55 and —317.8
respectively) (Table 3a). The deciduous broad leaved forest showed
negative correlation with average temperature (f, —10.76).
Mangrove demonstrated high negative correlation with total pop-
ulation (B, —493.15), and mixed forest showed positive correlation
with sex ratio (B, 16.64) (Table 3a). Elevation and slope showed a

negative influence on cropland with f values of —16.33 and —1.68
respectively, whereas sex ratio and establishment showed high
correlation with cropland having f values of 8.25 and 5.1 respec-
tively. Plantation showed a positive correlation with sex ratio and
establishment having B values of 31.26 and 15.8 respectively fol-
lowed by a negative correlation with working population and total
population with B values of —14.03 and —11.19 respectively. Road
length showed the least correlation with most of the classes
(Table 3a).

In BRB, we observed high correlation of distance to forest for
evergreen broad leaved forest and deciduous broad leaved forest
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Table 2
Change area matrix of classified LULC for a. MRB and b. BRB during 1985—2005.
(a) 2005
AQ BL BU CL DBF FL MF MG PL SL SP WB WL
1985 AQ 60 0 0 9 0 0 0 0 1 0 0 0 2
BL 0 586 2 34 1 15 0 0 21 19 0 3 75
BU 0 0 3402 5 0 0 0 0 0 0 0 1 0
CL 44 26 358 147050 0 0 0 0 26 0 0 563 80
DBF 0 28 35 643 69285 53 78 0 54 81 0 128 24
FL 0 0 16 243 0 4906 0 0 3 24 0 11 1
MF 0 13 26 98 31 21 10780 0 55 113 0 73 26
MG 5 0 1 4 0 0 1 181 2 0 0 14 14
PL 1 0 39 12 0 10 0 1 3212 68 0 18 44
SL 4 19 65 268 62 50 46 0 77 14410 0 127 65
SP 0 0 0 0 0 0 0 0 0 0 21 1 0
WB 42 0 4 397 3 8 1 9 13 72 1 6672 56
WL 43 0 31 129 1 4 2 6 40 52 0 28 797
(b) 2005
BL BU CL DBF EBF FL GL MF PL SI SL WB WL
1985 BL 2025 1 0 0 4 0 15 9 0 58 1 0 2025
BU 0 3393 12 0 0 0 0 3 2 0 1 4 0
CL 0 41 45594 0 0 24 8 0 49 0 3 800 0
DBF 0 20 363 9044 2 0 15 3 11 0 15 55 0
EBF 9 29 995 0 103708 4 43 11 13 6 56 136 9
FL 0 0 26 0 0 121 0 0 0 0 0 4 0
GL 9 2 197 3 23 0 7700 3 4 126 1 721 9
MF 5 113 868 5 16 1 40 61755 40 0 194 243 5
PL 0 27 99 2 0 0 1 3 8053 0 2 26 0
SI 101 0 0 0 14 0 24 0 0 9475 122 1 101
SL 1 17 184 1 4 0 3 5 0 0 10432 29 1
WB 0 4 885 19 16 6 837 20 25 1 26 10636 0
WL 0 0 18 0 1 0 6 1 0 0 1 76 151
Table 3a
Co-efficient generated from LULC map and driver interaction for MRB.
AQ EL SL DW SR LR EB PD DT RF SD TP DB WP DP AS MT MF RL
-541.23 -121.74 -3239 2594 207 -2046 -19.88 7.53 -549 -4.83 -353 3.01 2.83 2.4 2.21 114 055 -0
BL SR MT TP EB RF LR WP DP PD EL RL DB DW DT SD SL MF  AS
25.36 -1568 -8.08 6.15 -5.87 548 -365 -1.88 157 1.29 -0.83 -0.72 0.61 0.51 -05 036 022 007
BU DB SR TP LR MT SL EL EB AS DT RF DP WP RL DW MF PD SD
-673.83 3.38 -156  1.04 -0.88  0.87 -0.69 0.61 0.43 0.42 -039 -024 -023 0.1 -0.17 -02 007 -0
CL SL SR EB DP WP MT DT TP EL LR PD RF SD DB MF AS RL DW
-1633  8.25 5.1 3.94 -32 -3.14 182 -1.75 -168 -126 0.83 0.55 0.48 0.29 -019 -02 -02 0.14
DBF DP MT DT EB SR WP SL RF TP EL DW MF RL DB AS PD SD LR
-31358 -10.76 -543 454 413 298 2.7 241 1.56 1.29 1 0.65 -0.62 0.39 03 -02 -02 -01
FL SR EB SL MT TP WP PD EL RF DP DW DB DT LR MF AS SD RL
20.02 -15.13  -1098 -1032 74 6.46 -5.27 298 -259 -246 -1.78 -142 1.28 0.83 -0.72 0.09 -0.1 0.03
MF DP SR MT EB WP DT RF SL EL TP MF SD LR AS DW PD DB RL
-497.21 16.64 6.83 3.24 -2.74 266 -2.55  2.09 -092 -07 -051 044 039 -031 -021 011 -0.1 0.03
MG DP TP LR EB EL SR WP MF MT SL DT DW DB RF RL AS SD PD
—735.55 -493.15 431.8 27219 -2444 16344 -1458 -107.8 -20.09 -13.8 12.89 -6.78 643 6.11 2.76 0.6 -06 -04
PL SR EB WP TP MT LR RF SL EL DT DW RL DP PD AS DB SD MF
31.26 15.8 -14.03 -11.19 1042 8.2 -6.97 -461 —-442 3.06 2.51 1.19 -1.13 112 0.68 035 -03 -0
SP SR MT DP SL WP EB PD RL EL DT LR RF DW AS TP MF DB SD
6.29 441 -3.82 329 -247  2.02 -1.86 1.05 0.97 0.92 0.9 0.47 0.42 0.19 0.16 -0.1 0.09 0.01
SL MT EL SR LR EB SL RF TP WP MF DB DT PD DP SD DW RL AS
-1870.3 -1280.1 931.7 -3004 23446 -2121 17623 1733 —134.8 -883 -47.2 321 21 -149 105 723 -34 217
WB DW SL MT EB DT TP WP EL PD LR SR AS RF MF SD DB DP RL
-3178 -20.11 -1228 -7.84 554 494 4.81 -467 -206 -179 -177 -148 1.29 0.69 -065 -05 -01 O
WL EB WP MT EL SR TP RF AS SD DT LR DB DP MF DW SL PD RL
15.59 -14.2 -6.61 —-6.52 4.81 -373 -344 -318 -207 162 15 -14 -11 -099 -094 -09 -06 055

with f values of —340.3 and —247.17 respectively, (Table 3b). Mixed
forest showed a negative correlation with elevation (8, —7.88) fol-
lowed by a positive correlation with slope (B, 7.04; Table 3b).
Cropland was negatively correlated with slope (B, —7.59) followed
by a positive correlation with literacy rate. Built-up land showed
positive correlation with average temperature and literacy rate
with B values 4.3 and 3.39 respectively (Table 3b). Distance to water

body and slope were the most influencing drivers showing negative
correlation for water body with B values —278.4 and -8.27
respectively (Table 3b). Elevation was the most influential driver for
snow and ice class with positive correlation with  value 32.36.
Aspect has minimal values indicating least correlation with most of
the drivers (Table 3b).
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Table 3b
Co-efficient generated from LULC map and driver interaction for BRB.
BL EL MT LR RF TP DP PD EB
125 —7.43 7.09 6.53 -436 4.21 2.82 1.32
BU DB MT LR SL EL EB AS PD
—-805.89 43 3.39 -185 -095 0.85 0.67 0.49
CL SL LR MT EL DW DB DP DT
-7.59 5.06 —4.06 -271 -234 -137 128 1.17
DBF DP MT EL EB WP SL MF TP
—247.17 -2968 —-1545 -3.13 -292 -279 -216 1.76
EBF DP MT SL LR RL PD RF DB
—340.3 19.45 5.29 -243 -228 137 -1.02 0.84
FL SL DB EL DwW MF MT EB PD
-16.63 -1212  6.72 -281 -2.81 -243 -175 1.73
GL EL LR PD DB RF EB DP TP
541 5.32 —3.53 333 3.09 2.94 -2.89 1.85
MF EL SL LR PD MT DW DP EB
—7.88 7.04 6.07 —-5.67 3.96 1.69 1.42 135
PL MT EL LR DB SL RL PD DwW
20.37 -1191 5.5 -5.1 —-493 342 3.22 3.13
SI EL DP TP RF PD LR MF DT
32.36 —-5.42 —5.21 4.38 4.37 —-435 -417 -336
SL MT EL LR RL EB DB DW MF
11.6 535 4.04 3.72 1.9 -188 -1.85 -1.69
WB DW SL EL LR DP TP PD MT
—-278.4 -8.27 -3.17 —-224 184 -1.79 1.79 1.61
WL DW SL DP LR RF TP DB PD
-31.19 —-1526 -5.17 3.85 3.58 —2.67 236 —-2.32

DB SD WP MF DW DT RL AS SL
1.15 0.85 0.6 0.47 0.32 -0.27 0.15 0.02 0

DP WP RL RF TP DT SD MF Dw
0.34 0.29 0.29 -026 -0.25 0.22 0.1 -0.09 -0.08
RF PD EB MF WP RL TP SD AS
-1.05 0.82 0.77 0.54 0.35 0.23 -017 -013 -0.04
PD RL Dw DB SD LR RF DT AS
1.41 1.25 1.09 —-094 0.65 -0.61 0,51 -0.14 -0.08
DW MF EB EL AS WP TP SD DT
0.73 0.66 -0.51 047 0.45 0.3 -023 -0.19 -0.06
LR DT SD RF RL AS TP DP WP
1.54 1.38 1.09 1.06 0.82 0.74 -045 0.14 0.1

SL SD MT MF DT WP DW RL AS
-1.24 -09 -0.8 -071 -069 -059 -0.58 0.25 0.17
SD TP DB RF AS WP DT RL MF
0.91 0.9 -0.74 -024 -023 0.18 -0.1 -004 O

WP DT DP MF EB SD RF AS TP
1.96 -182 -139 06 0.4 0.38 -034 -027 0.09
DW EB MT RL Wwp DB SL SD AS
3.31 2.36 -187 178 -1.68 131 -056 048 0.02
TP PD RF DT SD AS WP SL DP
-134 -111 -0.63 043 0.39 -037 035 0.32 0.27
RL DT AS DB EB WP SD RF MF
0.53 -051 -04 —-0.38 036 0.33 -031 -03 -0.09
EB MT MF EL WP DT RL SD AS
231 -192 -174 -0.61 0.53 -051 -038 -0.14 0.12

4.4. Predicted LULC map for 2025

In general, the LULC prediction for 2025 carried forward the
pattern of 1985—2005 i.e., decrease in forest classes and increase in
cropland and built-up classes were observed for both the basins
(Fig. 4).

The deciduous broad leaved forest, mixed forest, mangrove
would show predicted area of 68339 km?, 10575 km?, and 170 km?
respectively in MRB; whereas the evergreen broad leaved forest,
deciduous broad leaved forest and mixed forest would show

predicted area with 8636 km? 102501 km? and 60280 km?
respectively in BRB (Fig. 4; Table 1). The total area for built-up and
cropland was predicted to be 4550 km? and 149700 km? respec-
tively in MRB; and 3886 km? and 51883 km? respectively in BRB
(Fig. 4; Table 1).

In MRB, the maximum decrease in deciduous broad leaved
forest is predicted with 1043 km? followed by 333 km? in mixed
forest during 2005—2025; whereas the maximum increase could
be observed in cropland with 943 km? followed by built-up with
572 km? (Fig. 4a; Table 1). Increase in water body, plantation and

0 3060 120 180 240 03060 120 180 240 /
kms ™ ™ s ™ s [0
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Snow and Ice*
B Water body (WB)
B Waste land (WL)

Fig. 4. Predicted LULC maps of (a) MRB and (b) BRB for the year 2025.
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wasteland areas has been predicted showing a gain of 337 km?,
96 km? and 27 km? respectively (Fig. 4a; Table 1). In BRB, the
maximum loss has been predicted for mixed forest with 1532 km?
area followed by decrease of 1286 km? for the evergreen broad
leaved forest and 438 km? for deciduous broad leaved forest
(Fig. 4b; Table 1). Grassland, plantation, snow and ice have been
predicted with a loss of nearly 114 km?, 73 km? and 8 km? area
respectively (Fig. 4b); whereas an increase of 2641 km? and
239 km? has been predicted for cropland and built-up areas
respectively (Table 1). Water body, shrub land and wasteland could
show a gain of 341 km?, 158 km? and 27 km? areas respectively as
per the model prediction (Fig. 4b; Table 1).

We further analysed the logistic relationship between the major
LULC changes and changed drivers for the year 1985—1995. The
major conversions of forest classes, water body, grass and shrub
land to cropland were observed for the study period in BRB. Con-
versions of cropland to water body and water body to grassland
were also prominent in the basin. In MRB, conversions from de-
ciduous broad leaved forest, mixed forest, shrub land, fallow land
and water body to cropland were prominent. In addition, deciduous
broad leaved forest, shrub land, cropland to water body; cropland
to built-up; mixed forest to shrub land and shrub land to wasteland
were observed to have conversions of >100 km? magnitude. Posi-
tive 3 values indicate the positive relationship between the changes
in driver with the change in LULC, i.e. an increase in the value of a
driver would cause the increase in the corresponding LULC change
and vice versa.

In general, the distance drivers and population drivers played
dominant role in conversion of forest classes to cropland having a
higher B coefficients in both the basins (Table 4). In BRB, positive
correlation was observed for evergreen broad leaved forest to
cropland conversion with distance to forest driver and total pop-
ulation showing f values of 1575 and 944.54 respectively (Table 4).
Deciduous broad leaved forest to cropland conversion showed a
positive relation with population density, total and working pop-
ulation with a f values of 224, 162 and 128 respectively (Table 4).
Mixed forest to cropland conversion positively influenced by dis-
tance to forest with a B value of 58 and negatively influenced by
literacy rate (B, —49) respectively.

In MRB, cropland to built-up conversion was influenced nega-
tively by distance to built-up and positively by literacy rate and

population density showing f values of nearly —67, 18 and 8
respectively (Table 4). Major conversion to cropland was observed
from the fallow land, shrub land and water body classes, where
establishment and population density had a negative influence on
conversion from fallow land to cropland showing a f values of —101
and —80 and positive influence of literacy rate with a f value of 18.5
respectively. Conversion of mixed forest to shrub land was influ-
enced negatively by temperature and road length with a B value
of —89 and —6.5 respectively (Table 4).

5. Discussion
5.1. LULC mapping and change detection

The output maps and results of our first objective of LULC status
in MRB and BRB during 1985—2005 at decadal interval impart
meaningful knowledge by integrating ecological information into
image interpretation exercises (Behera et al., 2005). As there was no
control on the past satellite data w.r.t. the spatial and spectral
resolution, the digital classification would be erroneous. The on-
screen visual interpretation technique utilised for LULC classifica-
tion demonstrated control on each polygon boundary in compari-
son to other algorithm based classification techniques (Roy et al.,
2015a; Behera et al., 2014). We observed higher confidence due
to available ground truth information showing >90% of accuracy
and the mapped data might be served as a validation input in many
modelling exercises in future. Although visual interpretation is time
consuming, the efficacy of the method by providing more control in
classified polygons enhances the accuracy (Roy et al., 2015b). In
addition to the spectral response of the images the analyst knows
several aspects of study area based on the reconnaissance survey
which emphasizes to prior knowledge of an interpreter and helps
to define classes to be more representative of the real terrain
conditions. Moreover, the problem of mixed pixels was addressed
by visual interpretation especially for the mixed forests and built up
areas that are a heterogeneous mixture of types including build-
ings, grass, roads, water etc. (Jensen and Im, 2007). Visual inter-
pretation was shown to have more quality control over digital
classification for analysing medium resolution satellite data.
Ghorbani and Pakravan (2013) observed more precise results of
visual interpretation compared to digital classification. The

Table 4
Logistic regression results of the LULC change with the change in driver for the period 1985 to 1995 (p < 0.005).

BRB MRB

Conversion Type Drivers Coefficient (B) Conversion Type Drivers Coefficient (B)

GL-CL DW -5.80 FL-CL LR 18.53
EB -6.93 PD —80.55
RF 5.73 DW —4.60

EBF-CL EB 31.19 SL-CL PD 3.26
DF 1575.00 RL 0.80
TP 944.54 WB-CL DW 239.17
MT 4436 LR 7.32
WP 17.97 PD 8.25

DBF-CL PD 223.80 SL-WB DW -13.43
RF —62.06 DBF-WB DF 1167.00
TP 161.81 DW —8.52
wp 127.64 CL-WB DW —26.40

MF-CL DF 58.18 CL-BU LR 18.65
LR —48.76 PD 8.21
PD 3.65 DB -67.91

SL-CL DF 131.25 MF-SL DW —-38.27
TP 143.75 MF 32.25

WB-CL DW 336.95 RL —6.50

WB-GL DW 399.17 MT -89.33

CL-WB DW —336.26 SL-WL DF 69.07
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misclassification was observed in the boundary region of few
classes shows similar reflectance patterns and closely associated as
various forest classes as deciduous broad leaved forest, mixed for-
est, and evergreen broad leaved forest; agriculture land with grass
and scrubland. Additionally, the confusion was also observed in the
classes having very small patches i.e., barren land, built-up, saltpan
etc which are harder to discriminate in a moderate resolution
satellite data (i.e., Landsat MSS). Despite being time-consuming and
less repetitive in nature, visual interpretation allows a user to
delineate realistic objects by interpreting complex spatial patterns
using interpretation keys.

The biogeography of both the basins vary drastically as BRB
accommodates hilly terrain (maximum height of >8000 m a.m.s.1)
with snow and rain fed characteristics, while, MRB is comparatively
plain with <2000 m height a.m.s.l. We observed an overall increase
in cropland and decrease in forests in both the river basins in both
decades (Fig. 2). The decrease in forests i.e., deciduous broad leaved
forest, evergreen broad leaved forest and mixed forest was at the
expense of increase in cropland, built-up and water body. The
conversion of dense forest to cropland is prominent in both the
basins indicating increasing population dependency. Both the ba-
sins showed an increase in the population density for the studied
decade which significantly affected the deforestation rate.

Due to the reservoir constructions, intensive agricultural prac-
tices took place leading to loss of forests and barren lands in MRB
basin. It is evident from change matrix that major decline in forest
classes has taken place due to high conversion to cropland and
built-up as a result of anthropogenic pressure (Table 2). Large
patches of deciduous broad leaved forests were deforested during
construction of Hasedo reservoir and other reservoirs like Chandil,
Thenga, Harabhangi, Badanallah, Soundur and Indravati dam etc;
and expansion in area of Ganrel, Bhaskel, Dudhawa, Sundar dam
and reservoirs. Madduvalasa and Baghua reservoir were con-
structed during 1995—2005 (India WRIS; http://india-wris.nrsc.
gov.in/wrpinfo/index.php?title=Dams_in_Chhattisgarh for the list
of construction of various reservoirs in Mahanadi). Similar pattern
of high magnitude deforestation rate for agriculture land expan-
sions were also reported in past studies (Mishra, 2008; Reddy et al.,
2009; Giri et al., 2008). Additionally, the development of coastal
cropland and shrimp farming ponds are other cause for mangrove
decline (DasGupta and Shaw, 2013). Increase in built-up area could
be corroborated with the rise in industrial and manufacturing
complexes in this region. The basin comprises of major urban
centres namely Raipur, Durg and Cuttack and because of its rich
mineral reserves and adequate power resources it has an industrial
suitability thereby leading to urban expansion. Rural to urban
transformation, migration and economic development in these
areas in the past decade were also significant (Kumar et al., 2014).
Recently the decision of expansion of additional 580 km? around
the Bhubaneswar city, a major city within MRB, and inclusion of
367 revenue villages by state govt. took momentous measures in
conversion of regional LULC scenarios and would impact the future
built-up scenarios as well (3rd Jan., 2011, Telegraph). Built-up ex-
pansions would be near to existing built-up, distant to forest, low
elevated, flat terrain, having higher soil depth, populated areas with
higher road lengths. Projected scenario of 2025 with the last decade
LULCC trend predicted even higher magnitude of built-up expan-
sion by means of both cropland and plantation loss, followed by
deforestation. Most of the built-up expansions were predicted in
and around the exiting built-up areas highlighting the same trends
observed in the past two decades.

In contrast to MRB, the rate of deforestation was two times
higher in BRB, where big patches of evergreen broad leaved forest
and deciduous broad leaved forest at lower slope in the basins were

cleared for agricultural activities, as evident from the satellite im-
ages (Fig. S5). The decrease of forest area in BRB could be attributed
to increased biotic pressure, shifting cultivation and shrinkage of
shifting cultivation cycle (FSI, 2011; Lele and Joshi, 2009, Srivastava
et al., 2002; Kushwaha and Hazarika, 2004). Shifting cultivation,
also known as ‘jhum’ or slash and burn practice, in north east India
is one of the most detrimental practice leads to forest fragmenta-
tion and continuing to expand yearly. This practice is more intense
in Meghalaya, Nagaland and hilly regions of Assam. Nearly 0.45
million families annually cultivate 10,000 km? forests in BRB. BRB
has undergone several internal and external migrations of vast
population in the form of labourers, refugees from the neighbour-
ing countries i.e. Bangladesh, Srilanka, Nepal, Tibet. This resulted in
huge forest area encroachment for livelihood dependencies. As per
Nath and Mwchahary (2012), the population of Kokrajhar district of
Assam was tripled with five times higher population alone in the
forest area during 1961—2001. During British period various tea
gardens were encouraged at the expense of deforestation
(Khataniar, 2014). In addition, the opening of commercialized
timber mills in the region during 20th century led to the degra-
dation of upper Assam forests by > 1763 km? as per the Central
Forestry Commission. Alone in Assam the districts of North Cachar
Hills, Karbi Anglong, Karimganj and Hailakandi showed a loss due
to shifting cultivation while Sonitpur, Darrang and Karbi Anglong
showed an illicit felling to be the most causal factor of deforestation
(Khataniar, 2014). The other drivers of forest loss in the basin
include spread of smallholder agriculturalists, timber consumption
with illegal felling and logging in forest areas (Saikia, 2014). Ac-
cording to State Forest Report (FSI, 1997), BRB lost 1734 km? forest
covers during 1989—1995.

Following the past trend, the model also predicted increase of
cropland and urban area at the cost of forest cover loss in both the
basins. LULC change and extensive agricultural activities leads to
the deterioration of the quality of natural water. MRB is dominated
agriculturally and has undergone establishments of industries, thus
subjected to huge quantities of fertilizers, sewage loads, and ef-
fluents from industries etc. which get leached or brought into the
river water leading to nutrient enrichment and so the growth of
microorganisms and as a consequence depletion of oxygen was
observed (Dixit et al., 2013). A study by Ghosh et al. (2013) in Dhalai
basin, Tripura observed the more susceptibility of soil loss by water
erosion in agricultural land and degraded forest cover than dense
forest. The impact of LULC change on BRB can be expressed in terms
of flooding, changes in hydrology and soil nutrient degradation. In
contrast, MRB can express the impact of LULC change in terms of
soil degradation by increased acidity, toxicity; in addition loss of
water quality by addition of fertilizers can be more prominent in
MRB. Thus, a study on LULC change and its future prediction at
basin scale can offer much needed inputs for policy decision mak-
ing and proper resource management.

5.2. Analysis of drivers

The high accuracy of predicted map of 2005 for both the basins
(overall accuracy >97%) showed the reliability of the model and
significant impact of the drivers on LULC change (Table S4). This
provided confidence in generating the LULC scenario for the year
2025. The small mismatch could be attributed to the addition of
more pixels to the classes having less area i.e., aquaculture, barren
land and wasteland. It is obvious to have negative relationship of
forest class with 'distance to forest drivers', since the occurrence
probability of forest decreases with increased distance. Similarly,
expansion of built-up area is less expected with increased distance
to built-up since the patch contiguity and patch density plays a
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major role in urbanization i.e., higher the patch density or patch
area, higher the degree of built-up expansion in future.

In MRB, total population showed a negative relation with
mangrove, which could be attributed to its coastal presence, where
the population density is minimal. Cropland class had a negative
influence of slope as cropping is discouraged on higher slopes due
to higher erosion risks. It has been observed that the agricultural
activities are associated with the rural population and distance
from the natural forest; thus, the decreased distance from forest
limits the presence of cropland. The positive relation between sex
ratio and mixed forest deforestation could be attributed to higher
deforestation with higher women population as they primarily
collets fuelwood and fodder from forests (Agarwal, 1991;
Nagbrahmam, and Sambrani, 1983). In BRB, positive relation of
grassland with elevation was observed due to the presence of
temperate grasslands dominated by Themeda-Arundinella type
along with the Riverine grasslands at higher elevations. Snow and
ice had a positive relation with elevation since lower temperature is
experienced at higher elevations.

5.3. Driver analysis through LULC change

The population drivers were more prominent in BRB to influ-
ence conversion to cropland. In contrast, distance driver impact
was prominent in MRB for conversion to cropland. The positive
influence of establishment, total population can be explained in the
fact that within the studied time period there has been an increase
in population of BRB, thus it is obvious to have dependency of a
large population on agriculture for livelihood. In addition, the slash
and burn technique practiced by the tribes in BRB led to the con-
version of forests and shrub land to cropland with increased pop-
ulation. The distance to forest increase leads to the low forest
density and more fragmented area in the transition zone of forest
thus we get positive relation with the driver.

Higher positive B value of distance to water body against con-
versions of water body to cropland and grassland and vice versa
explains the river dynamics of the basin. In BRB, the accumulation
of eroded soil in the plains of northeast India leads to the contin-
uous changes in the river course (Table 3b). Thus, the cropland and
grass land along the river side with less distance to water body are
more prone to convert to water body and vice versa.

In MRB, positive influence of population density for the con-
version of cropland to built-up could be attributed to the increasing
demand of household to support the escalating population. The
negative relation of cropland to built-up change with distance to
built-up could be explained by the fact that patch contiguity and
patch area plays a major role in urbanization i.e., higher the patch
area, higher the degree of built-up expansion in future. Increasing
food demand and suitable site conditions due to availability of
sufficient water led to the conversion of fallow and shrub land to
cropland. The negative influence of ‘distance to water body’ driver
for the conversion of different LULC classes to water body could be
attributed to the construction and expansion of dams and reser-
voirs. The Dyna-CLUE model has been used successfully for trans-
forming the drivers influence on future land conversion in these
two river basins, thus imitating the trends in a realistic way.
Continuous deforestation may impose significant hydrological and
ecological changes by altering rainfall patterns. Prasad (2016)
observed a 100—200 mm reduction in summer monsoon and
1—2 mm reduction of per day rainfall in Ganga River basin and
North east India due to conversion of forest to tea crop. Das et al.
(2017) have observed a significant decrease in evapotranspiration
with increased runoff and baseflow due to conversion of forested
region to cropland and built up in the MRB.

6. Conclusions

The study has analysed the decadal (1985-1995-2005) LULC
changes in two major River basins of India using satellite imagery.
Remarkably, higher agricultural expansion, deforestation and ur-
banization due to developmental activities have caused alteration
in LULC status. The influence of drivers is prominent where prox-
imity holds the keys. LULC change is driven by environmental and
socio-economic drivers and the pattern is carried forward to pre-
dict the LULC map of 2025. The variability in drivers or the predictor
variables works as a major factor for future LULC change estimation
because of their spatial organisation.

The increase in water bodies in two River basins have been
attributed to different LULC changes such as in MRB; it is due to
creation of many reservoirs and aquaculture farms, whereas in BRB
it is mainly due to melting of snow and ice. In both the basins, the
built-up areas have increased and would continue to increase at the
expense of any other LULC classes, except snow and ice in BRB
owing to unsuitable conditions. Plantation activities have been
carried out mainly in waste land, fallow land and barren land
classes in both the river basins, whereas in BRB, many crop land
areas have been diverted to plantation of cash crop such as tea and
rubber. The conversion of scrub land has different routes i.e., in MRB
the decrease in scrub land classes is mostly due to conversion to
agricultural classes, whereas in BRB, scrub land acts as an inter-
mediate class through conversion of forest to non-forest land.
Similarly in MRB, most of waste and fallow lands were converted to
agriculture or built-up classes; wherein, in BRB, most of the
deforested lands remain for long as waste/fallow land before get-
ting converted to other LULC classes. The major driver of LULC
changes in BRB is found to be population presence, whereas in MRB
it is the distance or proximity to the anthropogenic sources.

Analysing these LULC change and their impacts at River-basin
level is an important step forward for a developing country in the
context of today's increasing focus on integrated water resources
management (IWRM) in River basins. However, to understand such
impacts of LULC change, accurate and efficient techniques are
necessary to provide the information on spatio-temporal changes,
their rates at which they occur and the drivers that drive these
changes (Lambin, 1997). Therefore, LULC change map is essential
for predictive analysis study providing useful information for
decision-making. The LULC change models reflect the ecological
balance response to changes and thus are useful for studying the
dynamics of land-use planning. However, the future work might
include a comparison using more rigorous statistics in predicting
LULC to emphasize the driver relationship along with pattern of
change. Since we are already in 2015, there is a need of mapping the
LULC scenario to judge the change pattern in last decade.
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