Department of BIOTECHNOLOGY

School of Biological Sciences

Curriculum Framework

M.Sc. Biotechnology

Based on National Education Policy- 2020

Doctor Harisingh Gour Vishwavidyalaya (A Central University) Sagar-Madhya Pradesh-470003

About the Department:

• The Department of Biotechnology was established in 2001-02 with UGC approval. The Department acquired an independent status in 2009 upon the up gradation of the University to Central University. The Department is a full-fledged independent unit under the School of Biological Sciences. The Department is well equipped to impart Master and PhD advanced education and training. The Department faculty adopts advance pedagogy techniques such as flip learning and laboratory based teaching.

Vision & Mission:

• We aim to become the center of innovative and cutting edge research. One of the important objectives of the Department is to cultivate distinguished future academicians and scientists. It is our endeavor to become a model of public private partnership. We pursue to enhance pedagogy to achieve higher objectives of teaching and learning. The focus is to cater to the need of efficient human resource of the country by producing skilled biotechnology professions.

Curriculum Framework based on National Education Policy-2020

NEP-2020 has conceptualized the idea to develop well rounded competent individuals for making the nation a self-reliant and global leader. In the same spirit, we at Department of Biotechnology have developed a curriculum framework to encompass the goals of NEP 2020. To this end, we have incorporated choice of subject/disciplines of study, creating academic pathways having constructive combinations of disciplines for study with multiple entry and exit points as well as focus on experiential learning for students by introducing multidisciplinary and skill enhancement courses and actual Hand's on training in the recent and trending aspects of Biotechnology.

M.Sc. Biotechnology: 04 Semester Course as per NEP 2020 Curriculum: 2022 Onwards

A) General:

- 1. Name of the Program: M. Sc. Biotechnology
- 2. Duration of the Program:
 - a) Minimum duration: 2 years
 - b) Maximum duration: 4 years
- 3. Structure of the Program:
 - a) Number of Major courses: 09 (54 credits)
 - b) Skill Enhancement courses: 03 (12 credits)
 - c) Compulsory Skill enhancement course in IV semester (14 Credit)
- 4. Scheme of Examination:
 - a) Mid Sem I Examination: 20 marks (As per University Norms)
 - b) Mid Sem II examination- Internal Assessment: 20 marks (As per University Norms)

^{*} To appear in the End Semester Examination the student must appear in all the Mid Semester Examinations.

End semester Examination for Laboratory courses is of 60 Marks.

Mode of Examination for all Skill Enhancement Courses (SEC) is Internal.

a) Assessment of performance in the experiment: 40 marks

b) Viva-voce of experiment : 10 marks

c) Maintenance of lab records and attendance : 10 Marks

Biotechnology: M. Sc. Program Structure and Scheme (NEP 2020)

Semester		Paper Code	Title of the Paper	Credits						
				L	Т	Р	С			
I	Discipline Specific: Major-1	BIT-DSM-121	Cell Biology	4	0	0	4			
		BIT-DSM-122	Laboratory -1	0	0	2	2			
	Discipline Specific: Major-2	BIT-DSM-123	Bioinstrumentation & Bioinformatics	4	0	0	4			
		BIT-DSM-124	Laboratory-2	0	0	2	2			
	Multi-Disciplinary: Major-3	BIT-MDM-121	Biochemistry and metabolic regulation	4	0	0	4			
		BIT-MDM-122	Laboratory-3	0	0	2	2			
S	Skill Enhancement: Course (SEC)	BIT-SEC-121	Basics of Research Methodology	2	0	0	2			
		BIT-SEC-122	Tools for Scientific Communication and	0	0	2	2			
			presentation							
				Tot	al Cred	it = 22	2			
II	Discipline Specific: Major-1	BIT-DSM 221	Genetics & Molecular Biology	4	0	0	4			
		BIT-DSM 222	Laboratory-4	0	0	2	2			
	Discipline Specific: Major-2	BIT-DSM 223	Animal & Plant Biotechnology	4	0	0	4			
		BIT-DSM 224	Laboratory-5	0	0	2	2			
	Multi-Disciplinary: Major-3	BIT-MDM 221	Microbial Technology	4	0	0	4			
		BIT-MDM 222	Laboratory-6	0	0	2	2			
	Skill Enhancement: Course (SEC)	BIT-SEC 221	Lab based Project Work	0	0	4	4			
					=22					

III	Discipline Specific: Major-1	BIT-DSM 321		4	0	0	4
		BIT-DSM 322		0	0	2	2
	Discipline Specific: Major-2	BIT-DSM 323		4	0	0	4
		BIT-DSM 324		0	0	2	2
	Multi-Disciplinary: Major-3	BIT-MDM 321		0	0	4	4
		BIT-MDM 322		0	0	2	2
	Skill Enhancement: Course (SEC)	BIT-SEC 321		2	0	0	2
		BIT-SEC 322		0	0	2	2
				To	otal Cred	it= 22	
IV	Skill Enhancement Course (SEC)	BIT-SEC 421	dissertation	14 Credits			

Total Credits

I +II+III+IV

22+22+22+14= 80 Credit

Semester-I

Discipline Specific: Major-1

Course Title

Course Code

Credit

12

12

Marks

M.Sc	Biotechnology	1	BIT-DSM -121	Cell Biology	Mid Sem 40	04				
					End Sem 60					
Objectives: 7	he objectives of this co	urse are to sensitiz	ze the students to	the fact that as we go down	the scale of magnitud	e from cells to				
organelles to	molecules, the understar	nding of various bio	logical processes.							
Outcome: St	udents will learn funda	mental aspects in	biological phenom	nenon and basic of cell struc	ture and functions al	ong with basic				
techniques.										
UNIT		Content								
I	Structure of Prokaryo	tic and Eukaryotic co	ell, Plasma membrar	ne, Cell wall, Nucleus, Mitochond	dria, Golgi bodies,	12				
	Lysosomes, Peroxison	nes, Vacuoles Endo	plasmic Reticulum,	Plastids and Chloroplast. Cell n	notility- cilia and					
	flagella.									
II	Structure and organiz	zation of cell skelet	on; Microfilaments	and Microtubule-structure and	assembly, actins,	12				
	myosin muscle contra	ction, Cell matrix int	eractions, Adhesion j	junction, Tight junctions, Gap jun	ctions					
III	Membrane transport	; Ways to move me	olecules across mer	mbranes; carrier proteins, Ion o	channels; Nuclear	12				

transport (export and import), transport across mitochondria and chloroplasts; exocytosis & endocytosis, protein

Cell cycle- steps and control of cell cycle; Cell cycle and cancer; Details of mitosis and meiosis cell division, Cellular

death and regulation: different modes of cell death and their regulation (apoptosis, necrosis, autophagy,

Molecular mechanism of signal transduction, Integration of signals, second messengers; G Protein Signaling

modification in the secretory pathway.

senescence etc.).

Semester

Class

IV

V

Subject

Essential Readings:

- 1) B. Alberts et. al., Molecular Biology of Cell, Garland Science, 2014, 6th edition
- 2) H. Lodish et al., Molecular Cell Biology, W H Freeman & Co (Sd), 2016, 8th edition
- 3) E. D. P De Robertis, Cell and Molecular biology, Wolter Kluwer, 2011.
- 4) G. Karp, Cell Biology, Wiley, 2013, 7th edition
- 5) Bakers, The world of the Cell, Jeff Hardin, Pearson Education, 8th

Suggested Reading:

- 1) S. F. Gillbert, Developmental Biology, Sinauer, 2016, 11th edition
- 2) B. Lewin, Cells, Jones & Bartlett Pub, 2006, 1st edition

Semester-I Discipline Specific: Major-1

Class	Subject	Semester	Course Code	Course Title	Marks	Credit
M.Sc	Biotechnology	1	BIT-DSM -122	Laboratory-1	Mid Sem 40	02
					End Sem 60	

Objectives: To provide hands on training and laboratory practice on various aspects of Cell biology techniques.

Outcome: Students would be able to analyse and understand various techniques to observe the cell structure and function at laboratory level.

List of Practical

Cell disruption using grinding/homogenizing and microscopic observation. Sub cellular fractionation of tissues and microscopic visualization Microscopic examination of cell division and stages (Slide visualization). Qualitative estimation of cell/components by histo-chemical staining. Isolation and separation of cell organelles and their assay. Squash preparation for chromosome staining for mitosis (onion root tip).

Essential Readings:

- 1) J. Davey and J.M. Lord, Essential Cell Biology Vol 1: Cell Structure (A practical approach), Oxford University Press, 2003
- 2) J. Davey and J.M. Lord, Essential Cell Biology Vol 2: Cell Function (A practical approach), Oxford University Press, 2003

Suggested Readings:

- 1) J. E. Celis, Cell Biology: A laboratory handbook (Vol 1-4), Elsevier Academic Press, 2008, 3rd edition
- 2) E. Goldman and L. H. Green, Practical Handbook of Microbiology, CRC press, 2015, 3rd edition

Semester-I Discipline Specific: Major-2

Course Code

Course Title

Credit

Marks

Subject

Semester

microbes, plants and animals from database, molecular docking

Class

M.Sc	Biotechnology	II	BIT-DSM-123	Bioinstrumentation &	Mid Sem 40	04			
				Bioinformatics	End Sem 60				
Objectives: To provide students with the theory and practical experience of various instruments used in the Biotec									
also the use	also the use of common computational tools and databases which facilitate investigation of molecular biology.								
Outcomes:	The student would be	able to operate	the sophisticated	d instruments and use online b	ioinformatic tools.				
		·	·						
UNIT	Content								
I	Microscopy: Light and compound microscopy, confocal microscopy, electron microscopy; Principles of colorimetry								
	and UV-Vis spectrophoto	metry, Mass spect	rometry						
II	Principle of centrifugation	n, preparative and	analytical centrifu	gation, Principle of Chromatograp	hy, planar and column	12			
	chromatography, paper	chromatography, 1	hin layer chromat	ography, High performance liquid	chromatography and				
	Gas Chromatography, Ele	ectrophoresis techi	niques: Principle ar	nd application					
III	Molecular biology techn	iques: Southern, N	orthern and Weste	ern blotting- principle and applicat	ions; Principle of DNA	12			
	sequencing: Gilbert che	mical degradation	method, Sanger's o	dideoxy chain termination method					
IV	Introduction of biostatis	tics. Types of data	a, types of variable	es, tabulation of data and its grap	ohical representation.	12			
	Measures of central ten	dency and dispersi	on: Mean median,	model range, standard deviation	and variance, various				
	methods of mean compa	arison (T-test, ANN	OVA)						
V	Tools for sequence align	ment using NCBI da	atabase; Alignment	of pairs of sequence; Alignment of	of multiple sequences;	12			

Primer designing tools and characteristics of primers; Accessing and retrieving genome project information for

Essential Reading:

- 1) K. Wilson and J. Walker, Principles and Techniques of Biochemistry and Molecular Biology, Cambridge University Press, 2013.
- 2) B Sivasankar, Instrumental Methods of Analysis, Oxford University Press, 2012
- 3) Sharma, Munjal and Shanker, Text book of Bioinformatics: Rastogi publisher, India 2017
- 4) Attood, Parry-Smith and Phukan, Introduction to Bioinformatics, Fourth edition, Pearson Publisher

Suggested Reading:

1) B. Williams and S. Sawyer, using information technology: a practical introduction to computers & communications, McGraw Hill Education, 2005, 6th edition

Semester-I Discipline Specific: Major-2

Class	Subject	Semester	Course Code	Course Title	Marks	Credit
M.Sc	Biotechnology		BIT-DSM-124	Laboratory-2	Mid Sem 40 End Sem 60	02

Objectives: To provide students with practical experience of various instruments used in the Biotechnology and also the use of common computational tools and databases which facilitate investigation of molecular biology.

Outcomes: The student would be able to operate the sophisticated instruments and use online bioinformatic tools.

List of Practical:

- 1. Operating system commands of computer.
- 2. Sequence analysis, BLAST, NCBI search methods
- 3. Separation by Chromatography (TLC/ paper Chromatography).
- 4. Spectrophotometric analysis of bacterial culture and growth analysis.
- 5. Hands on training on DNA sequencing method
- 6. Experimental demonstration of TEM, SEM and Confocal Microscopy

Essential Reading:

- 1) K. M. Mooring, Computer Fundamentals: A Practical Guide, Kendall Hunt Pub Co, 2009
- 2) J. J. Parsons and D. Oja, Practical Microsoft Office 2013, South-Western College Publishing, 2013
- 3) M. Agostino, Practical Bioinformatics, Garland Sciences, 2012, 1st edition
- 4) M. R. Green and J. Smbrook, Molecular Cloning: A Laboratory Manual (3 Volumes), Cold Spring Harbor Laboratory Press, 2012, 4th edition

Suggested Reading:

- 1) J. Pevsner, Bioinformatics and Functional Genomics, Wiley-Backwell, 2015, 3rd edition
- 2) K. Wilson and J. Walker, Principles and Techniques of Biochemistry and Molecular Biology, Cambridge University Press, 2013, 7th edition

Semester-I Multi-disciplinary Major-3

Course Title

Biochemistry & and

Course Code

BIT-MDM -121

functions. Glycolipids and phospholipids, structure and function plasma membrane

and diant agrees the dalcaid magnetisms. 7 sabance of light magnetisms

Credit

12

12

12

04

Marks

Mid Sem 40

Class

M.Sc

Ш

IV

V

Subject

Biotechnology

(DNA and RNA),

competitive, allosteric inhibition.

Semester

	2.0000.087	·		zioni in di cara		.		
				metabolic regulation	End Sem 60			
•	Objectives: To build upon undergraduate level knowledge of biochemical principles with specific emphasis on different metabolic pathways.							
Outcome: Students would be able to analyse and interpret various biomolecules, pathways of the cell and their significance in metabolism.								
UNIT			Content			Contact		
1						Hours		

metabolism.		
UNIT	Content	Contact
		Hours
I	Chemical basis of life: Water – properties of water, essential role of water for life on earth pH, buffer, Basic concept	12
	of thermodynamics of living system, Enthalpy, Entropy, Free energy, Thermodynamic rules,	
II	Carbohydrates-classification and reactions. Carbohydrates metabolism, Lipids- classification, structure and	12

Amino acids and peptides- classification, Proteins structure and classification: Primary, secondary, tertiary and

quaternary structures of protein. Concept of protein folding & denaturation; Structural details of Nucleic acids

Enzymes: Structure and classification. Enzymes as biological catalysts: Isozymes, Vitamins and cofactors;

Ribozymes: structure and function; Mechanism of enzyme action, Enzyme inhibition: competitive, non-

Glycolysis & Citric acid cycle, entry to citric acid cycle, Oxidative phosphorylation; importance of electron transfer

in oxidative phosphorylation; F1-F0 ATP Synthase; Photosynthesis – chloroplasts and two photosystems; proton

Essential Readings:

- 1) D. Voet and J. G. Voet, Biochemistry, J. Wiley & Sons, 2011, 4th edition
- 2) L. Pauling, General Chemistry, www.bnpublishing.com, 2011
- 3) D. L. Nelson and M. Cox, Lehninger Principles of Biochemistry, WH Freeman, 2017, 7th edition
- 4) J. M. Berg, et. al., Biochemistry, WH Freeman, 2015, 8th edition

Suggested Readings:

- 1) H. Lodish, et.al., Molecular Cell Biology, W H Freeman & Co (Sd), 2016, 8th edition
- 2) E. D. P De Robertis, Cell and Molecular biology, Wolter Kluwer, 2011.

Semester-I Multi-disciplinary Major-3

Class	Subject	Semester	Course Code	Course Title	Marks	Credit
M.Sc	Biotechnology	I	BIT-MDM -122	Laboratory-3	Mid Sem 40 End Sem 60	02

Objective: To introduce and train students in various techniques used for biochemical analysis of biomolecules.

Outcomes: The students would be able to analyze biomolecules qualitatively and quantitatively.

List of Practical:

- 1. Preparation of different buffers used in biochemical reactions and its pH measurement
- 2. Isolation and quantification of protein by spectrophotometric method.
- 3. Qualitative reactions of various amino acids including diagnostic tests
- 4. Qualitative reactions of various carbohydrates including diagnostic tests
- 5. Method of isolation of plant/animal genomic DNA & quantification.
- 6. Method of isolation of RNA & quantification

Essential Reading:

- 1) H. Miller, et al., Molecular Biology Techniques, Elsevier Academic Press, 2011, 3rd edition
- 2) W. Ream and K. G. Field, Molecular Biology Techniques: An Intensive Laboratory Course, Elsevirer Academic Press, 1998, 1st edition
- 3) David Plummer, An Introduction to Practical Biochemistry, Tata McGraw Hill Education; 3rd edition (2006)

Suggested Reading:

1) M. R. Green and J. Smbrook, Molecular Cloning: A Laboratory Manual (3 Volumes), Cols Spring Harbor Laboratory Press, 2012, 4th edition.

Semester-I Skill Enhancement: Course (SEC)

	Skiii Elinancement. Course (SEC)								
Class	Subject	Semester	Course Code	Course Title	Marks	Credit			
M.Sc	Biotechnology	I	BIT-SEC -121		Mid Sem 40 End Sem 60	02			
Objectiv	Objectives: Students will be able to understand the techniques for scientific literature searching and scientific writing and presentation as well as								

develop scientific communication skills. **Outcomes:** The students should be able to read, interpret and present scientific data.

discussions: Fellowshin/scholarshin application writing

Ш

IV

V

UNIT Content

Contact

Empirical science, scientific methods and best laboratory practices; Choosing a mentor, lab and research question; maintaining a lab notebook; Computing skills for scientific research: search engines and their mechanism of

PowerPoint Presentation skills – formal presentation skills; defending interrogation of science

searching; types and importance of search engines in scientific research; internet as a medium of interaction between scientists; effective email strategy using the right tone and conciseness П Scientific writing skills - importance of communicating science; problems while writing a scientific document;

initiating communication; avoiding breakdowns while communicating, barriers to effective communication,

blind review; characteristics of effective technical communication; ethical issues, scientific misconduct.

6

plagiarism: software for plagiarism; scientific publication writing: elements of a scientific paper including abstract, introduction, materials & methods, results, discussion, references; drafting titles and framing abstracts

Publishing scientific papers - peer review process and problems, recent developments such as open access and

Dissertation/ Thesis writing skill. Article writing, Scientific poster preparation & presentation; participating in group

Hours

6

Concept of effective communication- setting clear goals for communication; determining outcomes and results;

6

6

6

Mode of End semester examination: Internal only

Essential Reading:

- 1. Valiela, I. (2001). Doing Science: Design, Analysis, and Communication of Scientific
- Research. Oxford: Oxford University Press.
- 2. On Being a Scientist: a Guide to Responsible Conduct in Research. (2009).
- Washington, D.C.: National Academies Press.
- 3. Gopen, G. D., & Smith, J. A. The Science of Scientific Writing. American Scientist,
- 78 (Nov-Dec 1990), 550-558.
- 4. J. Giba and R. Ribes, Preparing and Delivering Scientific Presentations: A Complete Guide for International Medical Scientists, Springer, 2011

Suggested Readings:

- Gopen, G. D., & Smith, J. A. The Science of Scientific Writing. American Scientist,
- 78 (Nov-Dec 1990), 550-558.
- Mohan, K., & Singh, N. P. (2010). Speaking English Effectively. Delhi: Macmillan India

Semester-I Skill Enhancement: Course (SEC)

Class	Subject	Semester	Course Code	Course Title	Marks	Credit
M.Sc	Biotechnology	1	BIT-SEC -122	'	Mid Sem 40 End Sem 60	02

Objectives: Students will be able to understand the techniques for scientific literature searching and scientific writing and presentation as well as develop scientific communication skills.

Outcomes: The students should be able to read, interpret and present scientific data.

List of Practical

PowerPoint preparation based on research paper

Learning effective PPT presentation

Plagiarism analysis of write-up using available software

Making of poster and presentation

Training on scientific writing based upon give topics

Communication while group discussion/interview

Mode of End semester examination: Internal only

Essential Reading:

- 1. Valiela, I. (2001). Doing Science: Design, Analysis, and Communication of Scientific
- Research. Oxford: Oxford University Press.
- 2. On Being a Scientist: a Guide to Responsible Conduct in Research. (2009).
- Washington, D.C.: National Academies Press.
- 3. Gopen, G. D., & Smith, J. A. The Science of Scientific Writing. American Scientist,
- Nov-Dec 1990), 550-558
- 4. J. Giba and R. Ribes, Preparing and Delivering Scientific Presentations: A Complete Guide for International Medical Scientists, Springer, 2011

Suggested Readings:

Gopen, G. D., & Smith, J. A. The Science of Scientific Writing. American Scientist,

Nov-Dec 1990), 550-558.

Mohan, K., & Singh, N. P. (2010). Speaking English Effectively. Delhi: Macmillan

India

M. Davis, et al., Scientific Papers and Presentations, Elsevier Academic Press, 2012, 3rd edition

Semester-II Discipline Specific: Major 1

Class	Subject	Semester	Course Code	Course Title	Marks	Credit			
M.Sc	Biotechnology	=	BIT-DCM-221	O7	Mid Sem 40 End Sem 60	04			
Objectives	Objectives: To teach students the fundamentals of genetics, central dogma, gene expression and regulation.								

Outcomes: T	he students would be able to understand each step of gene expression and regulation.
UNIT	Content

UNIT	Content	Contact
		Hours
1	History of genetics, Mendelian principles, dominance, codominance and incomplete dominance, concept of gene	12

and genome, monohybrid and dihybrid crosses, Concept of alleles and gene

12

Molecular structure of DNA, Chromosome organization, DNA Replication: Prokaryotic and Eukaryotic DNA

П replication, enzymes and accessory proteins involved in DNA replication. DNA damage and repair Transcription: Prokaryotic and Eukaryotic transcription, RNA polymerase. Transcription factors, regulatory elements Ш

Universal genetic codes, degeneracy of codons, Wobble Hypothesis; Translation: Prokaryotic and Eukaryotic

Gene silencing approaches: co-suppression, antisense RNA techniques, transpositions- transposable genetic

elements in prokaryotes and eukaryotes, role of transposons in gene expression

translation, translation machinery, mechanisms of initiation, elongation and termination, regulation of translation.

12

12

and mechanisms of transcriptional regulation, transcription termination; Posttranscriptional modification, Operon concept in prokaryotes with examples

IV

V

12

Essential Reading:

- 1) J. E. Kerb's, Lewin's Gene XII, Jones and Barlett.
- 2) H. Lodish, et.al., Molecular Cell Biology, W H Freeman & Co (Sd), 2016, 8th edition
- 3) G. Karp, Cell Biology, Wiley, 2013, 7th edition
- 4) D. Voet and J. G. Voet, Biochemistry, J. Wiley & Sons, 2011, 4th edition
- 5) P. J. Russel, Genetics: A Molecular Approach, Pearson Education, 3rd Edition.
- 6) D. P. Snustad and M. J. Simmons, Principles of Genetics, John Wiley, 5th Ed.

Suggested Reading:

- 1) J. M. Berg, et. al., Biochemistry, WH Freeman, 2015, 8th edition
- 2) B. Alberts and A, Johnson, Molecular Biology of Cell, Garland Sciences, 2014, 2014.

Semester-II Discipline Specific: Major 1

Class	Subject	Semester	Course Code	Course Title	Marks	Credit
M.Sc	Biotechnology	II	BIT-DCM-222	Laboratory-4	Mid Sem 40	02
					End Sem 60	

Objective: To train students in various basic techniques of molecular biology.

Outcome: The student should be able to isolate, manipulate, visualize and quantify nucleic acids and proteins.

List of Practical:

Plasmid DNA isolation and separation on gel.

Isolation of genomic DNA from plants/insect/animal cell.

Electrophoresis of DNA- linear, circular and super coiled plasmid.

Restriction digestion of genomic DNA.

Isolation of RNA and separation on denaturing gel

Amplification of DNA using PCR technique

Essential Reading:

- 1) T. Brown, Essential Molecular Biology: Volume I: (Practical Approach Series), Oxford University Press, 2000, 2nd edition
- 2) T. Brown, Essential Molecular Biology: Volume II: (Practical Approach Series), Oxford University Press, 2000, 2nd edition

Suggested Reading:

1) M. R. Green and J. Smbrook, Molecular Cloning: A Laboratory Manual (3 Volumes), Cols Spring Harbor Laboratory Press, 2012, 4th edition

Semester-II

Marks

Mid Sem 40

Credit

12

12

12

12

04

		Discipline Specific: Major 2				
Class	Subject	Semester	Course Code	Course Title		
M.Sc	Biotechnology	11	BIT-DSM-223	Animal & Plant Biotechnology		

Regulation of GE plants

animals: methods and their commercial applications

mapping. Intellectual property management, trademark and patent

Ш

IV

V

	2.00001			7		• •
					End Sem 60	
Objective: To	teach students the fund	damentals of anima	al & plant biotechn	ology and their applications with	various approaches t	o understand
animal bioto	بمنامه المصاحبة المسامين	al achomica, achoti	- + + - + - + - + - + - + - + - + - + -	d made and a whole ding of plants and	ما مسنسم ما م	

animal biotechnology, plant and animal genomics, genetic transformation and molecular breeding of plants and animals. Outcomes. The students should be able to analyze and comprehend the requirement and principles of plant and animal coll and culture

techniques	The students should be able to analyze and comprehend the requirement and principles of plant and animal ce	ii and cuiture
UNIT	Content	Contact Hours
I	Plant Tissue Culture historical perspective; media preparation – nutrients and plant hormones; Principle of tissue Culture; Major	12
	instruments requirement of plant tissue culture, Factors affecting tissue culture, micropropagation and callus culture, Organogenesis,	

Transgenic plants: Mechanism of genetic transformation Agrobacterium-mediated gene delivery; direct gene transfer in plantelectroporation, particle bombardment and alternative methods. Importance of transgenic plants, Pros and cons of transgenic plants,

Animal cell culture: brief history of animal cell culture; cell culture media, reagents & instruments; Balanced Salt Solutions (BSS), Culture

medium. Chemical, physical and metabolic functions of different constituents of culture medium. Role of carbon dioxide, serum and

Organ culture, Whole embryo culture, In-vitro fertilization and embryo transfer, Animal cloning: Methods and applications. Transgenic

Production of monoclonal antibodies, Bioreactors for large scale culture of animal cells, DNA based molecular markers for genetic

supplements in cell culture. Culture of mammalian tissues, primary culture, secondary culture, cell lines maintenance

techniques	•	
UNIT	Content	Contact Hours
I	Plant Tissue Culture historical perspective; media preparation – nutrients and plant hormones; Principle of tissue Culture; Major	12
	instruments requirement of plant tissue culture, Factors affecting tissue culture, micropropagation and callus culture, Organogenesis,	
	Somatic embryogenesis; protoplast isolation and culture, Applications of tissue culture in germplasm conservation and	
	cryopreservation	

Essential Reading:

R. I. Freshney, Culture of Animal Cells A Manual of Basic Technique and Specialized Applications, Wiley-Blackwell, 2016, 7th edition

Animal Cell Culture Techniques, M. Clynes, Springer Verlag.

An Introduction to Plant Tissue Culture, M.K. Razdan, Oxford and IBH Publishing

J. Hammond, Plant Biotechnology: New products and applications, Springer, 2000

Suggested Reading:

M. M. Ranga, Animal Biotechnology, Agrobios India, 2007, 3rd edition

Plant Tissue Culture: Theory & Practice, S.S. Bhojwani and M.K. Razdan, Elsevier Health Sciences

M. R. Green and J. Smbrook, Molecular Cloning: A Laboratory Manual (3 Volumes), Cold Spring Harbor Laboratory Press, 2012, 4th edition

Semester-II Discipline Specific: Major 2

Class	Subject	Semester	Course Code	Course Title	Marks	Credit
M.Sc	Biotechnology	II	BIT-DSM-224	,	Mid Sem 40 End Sem 60	02

Objective: To introduce and provide hands on training to the students in various plant and animal cell culture techniques used for genetic engineering.

Outcomes: The students would be able to analyze perform culture of plant and animal cells.

Practical:

- 1. Preparation, sterilization and pouring of MS nutrient media for plant tissue culture
- 2. Induction of callus using the leaf explants
- 3. Demonstration of Agrobacterium mediated transformation
- 4. Preparation of media & Surface sterilization for animal cell culture
- 5. Culture and maintenance of animal cell lines
- 6. Experimental demonstration of available molecular marker technique

Essential Reading:

- 1) K. Lindsey, Plant tissue culture manual, Springer, 2007
- 2) J. S. Vennison, Laboratory manual for Genetic Engineering, PHI Learning, 2010, 1st edition

Suggested Reading:

- 1) M. R. Green and J. Smbrook, Molecular Cloning: A Laboratory Manual (3 Volumes), Cold Spring Harbor Laboratory Press, 2012, 4th edition
- 2) R. H. Smith, Plant Tissue Culture: Techniques and Experiments, Elsevier Academic Press, 2012, 3rd edition

Semester-II Multi Disciplinary: Major 3

Class	Subject	Semester	Course Code	Course Title	Marks	Credit	
M.Sc	Biotechnology	II	BIT-MDM -221	Microbial Technology	Mid Sem 40 End Sem 60	04	
Objectives: The students will understand the significance and importance of microorganisms. The course is designed to introduce to the basics of microbial growth, nutrition, structure and classification and importance of microbes in human life.							

Objectives: The students will understand the significance and importance of microorganisms. The course is designed to introduce				
students to the basics of microbial growth, nutrition, structure and classification and importance of microbes in human life.				
Outcomes: The student would be able to: articulate the importance of microbes in various aspects of life and environment.				
Contents	Contact Hours			
ł	he basics of microbial growth, nutrition, structure and classification and importance of microbes in hum he student would be able to: articulate the importance of microbes in various aspects of life and environ			

	students to the basics of microbial growth, nutrition, structure and classification and importance of microbes in human life. Outcomes: The student would be able to: articulate the importance of microbes in various aspects of life and environment.						
UNIT	Contents						
I	The history and development of Microbiology, contribution of Leeuwenhoek, Pasture, Jenner, Koch; Morphology and structure of	12					
	bacteria, Berger's manual classification of microorganisms, three domain system, Scientific nomenclature, phylogenic and						
	tayonomic hiorarchy						

taxonomic nierarchy.

Principles of microbial growth: Liebig's Law and Shelfords law; Microbial nutrition and Microbial growth: Culture media (Synthetic 12 Ш

and complex), batch and continuous culture, Growth curve of bacteria. Factors affecting microbial growth; Staining: Gram's

staining, Acid fast staining. Bacteriology: Classification, Characteristic features and importance. Characteristics of methanobacteria, halophiles, Ш 12 thermoacidophiles. Microbial diversity of Eubacteria: Structure-function, properties and economic importance of Gram Positive (Actinomycetes) and Gram negative bacteria Spirochetes, Chlamydia, Rickettsia and Mycoplasma.

Virology: General characteristics structure of and classification of virus ultra structure TMV Lytic and Lysogenic cycle in

Development and scope of industrial microbiology, microorganisms used in industrial microbiology, Screening for economically

important cultures (Primary and Secondary screening); Microbiology of fermented food, probiotics, major products of industrial

bacteriophoges; Life cycle of HIV and Herpes simplex virus. Antimicrobial agents, Antibiotics.

12

12

IV

V

microbiology.

Essential Readings:

- 1) J. Willey, et. al., Prescott's Microbiology, McGraw Hill Education, 2011, 8th edition
- 2) M. J. Pelczar, et. al., Microbiology, McGraw Hill Education, 2001, 5th edition
- 3) R. Ananthanarayan, A & P Textbook of Microbiology, Orient Blackswan, 2013, 9th edition
- 4) G. J. Tortora, et. al., Microbiology, Pearson Education India, 2016, 11th edition

Suggested Readings:

D. Anderson, Nester's Microbiology: A Human Prespective, McGraw Hill Education, 2016, 8th edition

Semester-II

Multi Disciplinary: Major 3

Class	Subject	Semester	Course Code	Course Title	Marks	Credit
M.Sc	Biotechnology	II	BIT-MDM -124	Laboratory-6	Mid Sem 40 End Sem 60	02

Objectives: To provide hands on training and laboratory practice on various aspects of microbial techniques.

Outcome: Students would be able to demonstrate the technique of bacterial chandelling, growth and application at laboratory level.

List of Practical

- 1. Sterilization of media and instruments.
- 2. Isolation of bacteria from soil and its qualitative characterization.
- 3. Gram's staining of bacteria.
- 4. Bacterial growth curve and its analysis.
- 5. Demonstration of bacterial fermentation and visualization of bacterial strains
- 6. Antibiotic sensitivity test

Essential Readings:

- 1. J. P. Harley, Laboratory exercises in Microbiology, McGraw-Hill Higher Education, 2004, 6th edition
- 2. Industrial Microbiology by Casida, L.E. McGraw-Hill Higher Education, 2008
- 3. Industrial Microbiology by Patel, A.H. Elsevier Academic Press, 2003

Suggested Readings:

- 1) J. E. Celis, Cell Biology: A laboratory handbook (Vol 1-4), Elsevier Academic Press, 2008, 3rd edition
- 2) E. Goldman and L. H. Green, Practical Handbook of Microbiology, CRC press, 2015, 3rd edition

Semester-II Skill Enhancement Course

Class	Subject	Semester	Course Code	Course Title	Marks	Credit
Ciass		Jenneste.	course coue	Course Title	Wild No	Cicuit
M.Sc	Biotechnology	l II	BIT-SEC-321	Lab Based project work	Periodic assessment: 40	04
	07			• •		
					Evaluation of project	
					report/presentation: 60	
					report, presentation, oo	

The purpose of the course is to improve the student's ability to apply basic concepts and knowledge through laboratory based project work. The course will comprise of a mini project to solve or address a simple question or to improve/develop expertise of a particular technique through hands on experiments and generate data. The data will be interpreted and submitted as a project report and also be presented.

Evaluation:

a) First periodic assessment of the progress after 08 weeks : 20 marks

b) Second periodic assessment of the progress after 12 weeks : 20 marks

c) End semester examination will consist of

i) Evaluation of project report/presentation : 50 marks

ii) Viva-Voce of the project : 10 marks

Mode of end semester examination: Internal only