INSTITUTE OF ENGINEERING AND TECHNOLOGY (Approve by AICTE, New Delhi)

UNDERGRADUATE PROGRAMME

(B.Tech. PROGRAM IN ELECTRONIC AND COMMUNICATION ENGINEERING)

(Courses effective from Academic Session 2022-2023)

SYLLABI OF COURSES TO BE OFFERED

INSTITUTE OF ENGINEERING AND TECHNOLOGY DOCTOR HARISINGH GOUR VISHWAVIDYALAYA, SAGAR (M.P.) 470003 (A CENTRAL UNIVERSITY) The field of Electronics is a branch of physics and electrical engineering that deals with the emission, behaviour and effects of electrons using electronic devices. Electronics uses active devices to control electron flow effects such as resistance, enpacitance and inductor to control current flow.

Electronics has hugely influenced the development of modern society. The identification of the electron in 1897, along with the subsequent invention of the vacuum tube which could amplify and rectify small electrical signals, inaugurated the field of electronics and the electron age. Practical applications started with the invention of the diode by Ambrose as radio signal from an radio antenna possible with a non-mechanical device. The growth of electronics was rapid, and by the early 1920s commercial radio broadcasting and communications were becoming widespread, and electronic amplifiers were being used in such diverse applications as long distance telephony and the music recording industry.

The next big technological step took several decades to appear, when Solid-state electronics emerged with the first working semiconductor transistor which was invented by William Shockley, Walter Houser Brattain and John Bardeen in 1947. The vacuum tube was no longer the only means of controlling electron flow. The MOSFET (MOS transistor) was subsequently invented in 1959, and was the first compact transistor that could be miniaturised and mass-produced. This played a key role in the emergence of microelectronics and the Digital Processing employing Integrated circuits with sometimes millions of transistors on a single chip.

Continuous advances in the miniaturization of electronics over the last 30 years have enabled the information age for 21st century society. Throughout the last few decades, computer and other information and entertainment appliances have made tremendous gain in performance, productivity and power efficiency based almost entirely on the scaling of field-effect-transistor and their integration into ever more complex circuits.

For Semester I

S.No.	Nature of Courses	Credits
1.	Core Courses	15
2.	Skill Enhancement Courses	6
	Total	21 Credits

For Semester II

S.No.	Nature of Courses	Credits
1.	Core Courses	20
2.	Skill Enhancement Courses	1
	Total	21 Credits

Prof. Mukesh Kumar IIT Indore

Mtpoliancilly

[A] Scheme of Examination:

S.No.	Nature of Exam	Marks
1.	Mid Semester Examination 1	20
2.	Quiz/Assignment	10
3.	End Semester Examination	70
	Total	100

[B] Assessments:

- i) Internal Assessment:
 - a) Theory:

Each theory course must clearly mention the methodology of assessment i.e. assignment, presentation, group discussion etc depending on the number of students in the class and feasibility of adopting a particular methodology. The distribution of marks for internal assessments shall be as follows;

(i)	Evaluation of the assignment,	:	
	presentation, group discussion etc	:	07 Marks
(ii)	Attendance	:	03 Marks

The marks for attendance shall be awarded as follows:

(i)	75 % and Below	:	00 Mark
(ii)	>75 % and upto 85 %	:	01 Mark
(iii)	>85 % and upto 95 %	:	02 Marks
(iv)	>95 % and above	:	03 Marks

The introductory note must also mention that to be eligible to appear in End Semester Examination a student must appear in Mid Semester Examination and internal Assessment.

b) Practical/ Lab Courses:

Performing and getting the experiment checked regularly and incorporating the suggestion in the practical note book and attendance will be marked.

Attendance: 75 % attendance in a course is mandatory for a student to appear in end semester examination.

B. Tech. Programme in Electronic and Communication Engineering Session 2022-23 Course structure

Semester I (for ELECTRONIC AND COMMUNICATION ENGINEERING)

Semester - I (for ELECTRONIC AND COMMUNICA TION ENGINEERING

L T P C

_)					
BT CHY 101	Engineering Chemistry	3	1*	1	4
BT MTS 101	Mathematics-I	3	1	0	4
BT HUM 101	English for Communication (Skill)	2	0	0	2
BT ECE 101	Basic Electronics Engineering	3	1*	1	4
BT MEC 101	Engineering Graphics	2	0	1	3
BT MEC 111	Manufacturing Practices	0	0	2	2
BT INT 101	Internship-I at the Institute level/ Swachh Bharat Summer Internship Unnat Bharat Abhiyan /Rural Outreach (Skill)	0	0	2	2
	Total	13	1	7	21

Departments

CHY - CHEMISTRY

MTS - MATHS

HUM - Humanities

ECE - Electronics and Communication Engineering

MEC - Mechanical Engineering

INT - Internship

Color

3/

Semester = II (for ELECTRONIC AND COMMUNICATION ENGINEERING)

COMMONICATION		T.	Т	ľ	
ENGINEERING)			1	-	1
BT PHY 102	Engineering Physics	3	1*	1	4
BT MTS 102	Mathematics-II	3	1	0	4
BT MEC 102	Basic Mechanical Engineering	3	0	1	4
BT (1/1/102	Basic Civil Engineering & Mechanics	3	0	1	4
BT CST 102	Basic Computer Engineering	3	0	1	4
		0	0	1	1
BT HUM 102	Language Lab & Seminars (Skill)	To be	comple	ted dur	ing or
BT INT 102	Internship-I at the Institute level	at the	e end of	the sec	cond
			semes	er. Its	
		eval	uation/ d in thi	rdsemo	ester
		_	1	7	21
	Total	13	,		

Departments:

PHY - Physics

MTS - Mathematics

MEC - Mechanical Engineering

CEE - Civil Engineering

HUM - Humanities

INT - Internship

5

0//

INSTITUTE OF ENGINEERING AND TECHNOLOGY DOCTOR HARISINGH GOUR VISHWAVIDYALAYA, SAGAR (M.P.) 470003 (A CENTRAL UNIVERSITY)

New Scheme Based On AICTE Flexible Curricula

Branch: Electronics and Communication Engineering

B. Tech. First Year (I Semester)

BT CHY 101 Engineering Chemistry 3L-0T-1P 4 Credits

Objective: The objective of the Engineering Chemistry is to acquaint the students with the basic phenomenon/concepts of chemistry, the student face during course of their study in the industry and Engineering field. The student with the knowledge of the basic chemistry, will understand and explain scientifically the various chemistry related problems in the industry/engineering field. The student will able to understand the new developments and breakthroughs efficiently in engineering and technology. The introduction of the latest (R&D oriented) topics will make the engineering student upgraded with the new technologies. 1. To appreciate the need and importance of engineering chemistry for industrial and domestic use. 2. To gain the knowledge on existing and future upcoming materials used in device fabrication. 3. To impart basic knowledge related to material selection and the techniques for material analysis. 4. To impart knowledge of green chemical technology and its applications. 5. To provide an insight into latest (R&D oriented) topics, to enable the engineering student upgrade the existing technologies and pursue further research. 6. To enhance the thinking capabilities in line with the modern trends in engineering and technology

Course Contents:

Unit 1: Water - Analysis, Treatments and Industrial Applications

Sources, Impurities, Hardness & its units, Determination of hardness by EDTA method, Alkalinity & Its determination and related numerical problems.

Unit 2: Boiler problem & softening methods:

Boiler troubles (Sludge & Scale, Priming & Foaming, Boiler Corrosion, Caustic Embrittlement), Softening methods (Lime-Soda, Zeolite and Ion Exchange Methods) and related numerical problems.

Unit 3: Lubricants and Lubrication:

Introduction, Mechanism of lubrication, Classification of lubricants, significance & determination of Viscosity and Viscosity Index, Flash & Fire Points, Cloud & Pour Points, Aniline Point, Acid Number, Saponification Number, Steam Emulsification Number and related numerical problems.

Unit 4: Polymer & polymerization (4 Lectures)

N 8 - Salu

West De

Ionic polymerization. Ionic polymerization). Thermoplastic & Thermosetting polymers Elementary idea of Biodegradable polymers, preparation. polymers, preparation, properties & uses of the following polymers-PVC, PMMA, Teflon, Nylon 6. Nylon 6.6. Polymers & uses of the following polymers-PVC, PMMA, Teflon, Nylon 6.6. Polymers & uses of the following polymers-PVC, PMMA, Teflon, Nylon 6.6. Polymers & uses of the following polymers-PVC, PMMA, Teflon, Nylon 6.6. Polymers & uses of the following polymers-PVC, PMMA, Teflon, Nylon 6.6. Polymers & uses of the following polymers-PVC, PMMA, Teflon, Nylon 6.6. Polymers & uses of the following polymers-PVC, PMMA, Teflon, Nylon 6.6. Polymers & uses of the following polymers-PVC, PMMA, Teflon, Nylon 6.6. Polymers & uses of the following polymers-PVC, PMMA, Teflon, Nylon 6.6. Polymers & uses of the following polymers-PVC, PMMA, Teflon, Nylon 6.6. PMMA, Teflon, N 6, Nylon 6:6, Polyester phenol formaldehyde, Urea-Formaldehyde, Buna N, Buna S, Vulcanization of Rubber of Rubber,

Unit 5: Phase equilibrium and Corrosion (5 Lectures)

Phase diagram of single component system (Water) Phase diagram of binary Eutectic System (Cu-Ag) Corresion 7 Ag.) Corrosion: Types, Mechanisms & prevention. Spectroscopic techniques and application (6 Lectures) Principle, Instrumentation & Applications, electronics spectroscopy, Vibrational & Rotational Spectroscopy Rotational Spectroscopy of diatomic molecules.

Course Outcomes

The concepts developed in this course will aid in quantification of several concepts in chemistry that have been introduced at the 10+2 levels in schools. Technology is being increasingly based on the electronic, atomic and molecular level modifications.

Quantum theory is more than 100 years old and to understand phenomena at nanometer levels, one has to base the description of all chemical processes at molecular levels. The course will enable the student to:

- Analyse microscopic chemistry in terms of atomic and molecular orbitals and intermolecular forces.
- Rationalise bulk properties and processes using thermodynamic considerations.
- Distinguish the ranges of the electromagnetic spectrum used for exciting different molecular energy levels in various spectroscopic techniques
- Rationalise periodic properties such as ionization potential, electronegativity, oxidation states and electronegativity.
- List major chemical reactions that are used in the synthesis of molecules.

Practical List

NOTE: At least 8 of the following core experiments must be performed during the session.

Water testing 1.

- (i) Determination of Total hardness by Complexometric titration method.
- (ii) Determination of mixed alkalinity
 - **OH & CO3** a)
 - **CO3 & HCO3** b)
- (iii) Chloride ion estimation by Argentometric method.

Fuels & Lubricant testing: 2.

Flash & fire points determination by (i)

- Pensky Martin Apparatus, a)
- Abel's Apparatus b)
- Cleveland's open cup Apparatus c)
- Calorific value by bomb calorimeter. d)
- Viscosity and Viscosity index determination by (ii)
- Redwood viscometer No.1 a)
- Redwood viscometer No.2 b)
- (iii) Proximate analysis of coal
- Moisture content a)
- Ash content b)
- Volatile matter content c)
- Carbon residue d)
- (iv) Steam emulsification No & Anline point determination
- Cloud and Pour point determination of lubricating oil (v)
- Determination of percentage of Fe in an iron alloy by redox titration using 3. (i) N-Phenyl
 - anthranilic acid as internal indicator.
 - (ii) Determination of Cu and or Cr in alloy by Iodometric Titration.
 - (iii) Determination of % purity of Ferrous Ammonium Sulphate & Copper Sulphate.

Reference Books:

- Chemistry in Engineering and Technology Vol.1 &2 Kuriacose and Rajaram,
- McGraw Hill
- Fundamental of Molecular Spectroscopy C.N. Banwell, McGraw Hill Education Engineering Chemistry – B.K. Sharma, Krishna Prakashan Media (P) Ltd., Meerut.
- Basics of Engineering Chemistry S.S. Dara & A.K. Singh, S. Chand
- Applied Chemistry Theory and Practice, O.P. Viramani, A.K. Narula, &Company Ltd., Delhi.

New AgeInternational Pvt. Ltd. Publishers, New Delhi.

DOCTOR HARISINGH GOUR VISHWAVIDYALAYA, SAGAR (M.P.) 470003 (A CENTRAL UNIVERSITY)

New Scheme Based On AICTE Flexible Curricula

B. Tech. First Year (I Semester)

			t Charalleto
BT MTS 101	MATHEMATICS-I	3L-1T-0P	4 Credits
N. A.			

OBJECTIVES: The objective of this course is to familiarize the prospective engineers with techniques in calculus, multivariate analysis and linear algebra. It aims to equip the students with standard concepts and tools at an intermediate to advanced level that will serve them well towards tackling more advanced level of mathematics and applications that they would find useful in their disciplines. More precisely, the objectives are:

- To introduce the idea of applying differential and integral calculus to notions of curvature and to improper integrals. Apart from some applications it gives a basic introduction on Beta and
- To introduce the fallouts of Rolle's Theorem that is fundamental to application of analysis to
- To develop the tool of power series and Fourier series for learning advanced Engineering
- To familiarize the student with functions of several variables that is essential in most branches of engineering.
- To develop the essential tool of matrices and linear algebra in a comprehensive manner.

Course Contents:

UNIT 1: Calculus: (10 hours): Rolle's theorem, Mean Value theorems, Expansion of functions by Mc. Laurin's and Taylor's for one variable; Taylor's theorem for function of two variables, Partial Differentiation, Maxima & Minima (two and three variables), Method of Lagranges Multipliers.

UNIT 2: Calculus: (8 hours): Definite Integral as a limit of a sum and Its application in summation of series; Beta and Gamma functions and their properties; Applications of definite integrals to evaluate surface areas and volumes of revolutions. Multiple Integral, Change the order of the integration, Applications of multiple integral for calculating area and volumes of the curves.

UNIT 3: Sequences and series: (6 hours): Convergence of sequence and series, tests for convergence; Power series, Taylor's series, series for exponential, trigonometric and logarithm functions; Fourier series: Half range sine and cosine series, Parseval's theorem.

UNIT 4: Vector Spaces (8hours): Vector Space, Vector Sub Space, Linear Combination of Vectors, Linearly Dependent, Linearly Independent, Basis of a Vector Space, Linear Transformations.

UNIT 5: Matrices (8 hours): Rank of a Matrix, Solution of Simultaneous Linear Equations by Elementary Transformation, Consistency of Equation, Eigen Values and Eigen Vectors, Diagonalization of Matrices, Cayley-Hamilton theorem and its applications to find inverse.

- 1. G.B. Thomas and R.L. Finney, Calculus and Analytic geometry, 9th Edition, Pearson, Reprint, 2002.

 2. Erwin kreyszig, Advanced Engineering Mathematical Reprints of Sons 2006.96656 Textbooks/References:
- 2. Erwin kreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons, 2006.96656 3. Veerarajan T., Engineering Mathematics for Control of the Control of the
- 3. Veerarajan T., Engineering Mathematics for first year, Tata McGraw-Hill, New Delhi, 2008.

 A Ramana B.V., Higher Engineering Mathematics for first year, Tata McGraw-Hill, New Delhi, 2008.
- 4. Ramana B.V., Higher Engineering Mathematics, Tata McGraw Hill, New Delhi, 11thReprint, 2010.

 5. D. Poole. Linear Algebra: A Modern Letter Land McGraw Hill New Delhi, 2005.
- 5. D. Poole, Linear Algebra: A Modern Introduction, 2nd Edition, Brooks/Cole, 2005.

INSTITUTE OF ENGINEERING AND TECHNOLOGY DOCTOR HARISINGH GOUR VISHWAVIDYALAYA, SAGAR (M.P.) 470003 (A CENTRAL UNIVERSITY)

New Scheme Based On AICTE Flexible Curricula

B.Tech. First Year (I Semester)

BT HUM 101	English for Communication	2L-0T-0P	2 Credits
		ZEFOR	•

Objectives:

- To develop the communication skills and soft skills of the students
- To enhance the ability of the students to participate in group discussions and personal interviews

Unit-I

Identifying Common errors in writing: Articles, Subject-Verb Agreement, Prepositions, Active and Passive Voice, Reported Speech: Direct and Indirect, Sentence Structure.

Vocabulary building and Comprehension: Acquaintance with prefixes and suffixes from foreign languages in English to form derivatives, synonyms, antonyms, Reading comprehension.

Unit-Ill

Communication:

Introduction, Meaning and Significance, Process of Communication, Oral and Written Communication, 7 c's of Communication, Barriers to Communication and Ways to overcome them, Importance of Communication for Technical students, nonverbal communication.

Developing Writing Skills: Planning, Drafting and Editing, Precise Writing, Précis, Technical definition and Technical description. Report Writing: Features of writing a good Report, Structure of a Formal Report, Report of Trouble, Laboratory Report, Progress Report.

Business Correspondence: Importance of Business Letters, Parts and Layout; Application, Contents of good Resume, guidelines forwriting Resume, Calling/ Sending Quotation, Order, Complaint, E-mail and Tender.

Books Recommended:

- 1. 'Technical Communication : Principles and practice', Meenakshi Raman and Sangeeta Sharma (Oxford)
- 2. 'Effective Business Communication', Krizan and merrier (Cengage learning)
- 3. 'Communication Skill, Sanjay Kumar and pushlata, OUP2011
- 4. "Practical English Usage Michael Swan OUP, 1995.
- 5. "Exercises in spoken English Parts I-III CIEFL, Hyderabad, Oxford University Press

Course Outcomes: The student will acquire basic proficiency in English including reading and listening comprehension, writing and speaking skills. and speaking skills.

Communicative Language Laboratory:

Course objective: The language laboratory focuses on the practice of English through audio-visual aids and computer software. It intends to apply the Computer software. It intends to enable the students to speak English correctly with confidence and intends to help them to overcome their inhibitions and self-consciousness while speaking in English. Topics to be covered in the Language laboratory sessions:

- 1. Listening Comprehension.
- 2. Pronunciation, Intonation, Rhythm
- 3. Practicing everyday dialogues in English
- 4. Interviews.
- 5. Formal Presentation

Final Assessment should be based on assignment, assessment, presentation and interview of each candidate.

INSTITUTE OF ENGINEERING AND TECHNOLOGY DOCTOR HARISINGH GOUR VISHWAVIDYALAYA, SAGAR (M.P.) 470003 (A CENTRAL UNIVERSITY)

New Scheme Based On AICTE Flexible Curricula

B.Tech. First Year (I Semester)

	201 John A Hist Acut (A	Demester,	
BT ECE 101	Basic Electrical & Electronics Engineering	2L-1T-1P	4Credits

Objectives: Electronics and Communications Engineering (ECE) involves researching, designing, developing, and testing electronic equipment used in various systems. Electronics and Communications engineers also conceptualize and oversee the manufacturing of communications and broadcast systems. This stream of engineering deals with analog transmission, basic electronics, microprocessors, solid-state devices, digital and analog communication, analog integrated circuits, microwave engineering, satellite communication, antennae, and wave progression. It also deals with the manufacturing of electronic devices, circuits, and communications equipment.

D.C. Circuits: Voltage and current sources, dependent and independent sources, Units and dimensions, Source Conversion, Ohm's Law, Kirchhoff's Law, Superposition theorem, Thevenin's theorem and their application for analysis of series and parallel resistive circuits excited by independent voltage sources, Power & Energy in such circuits. Mesh & nodal analysis, Star Delta transformation & circuits.

1- phase AC Circuits: Generation of sinusoidal AC voltage, definition of average value, R.M.S. value, form factor and peak factor of AC quantity, Concept of phasor, Concept of Power factor, Concept of impedanceand admittance. Active, reactive and apparent power, analysis of R-L, R-C, R-L-C series & parallel circuit 3-phase AC Circuits: NELECTRONIC AND COMMUNICATION ENGINEERING and advantages of three phase systems. Meaning of Phase sequence, balanced and unbalanced supply and loads. Relationship between line and phase values for balanced star and delta connections. Power in balanced & unbalanced three-phase system and their measurements.

Magnetic Circuits: Basic definitions, magnetization characteristics of Ferro magnetic materials, self inductance and mutual inductance, energy in linear magnetic systems, coils connected in series, AC excitation in magnetic circuits, magnetic field produced by current carrying conductor, Force on a current carrying conductor. Induced voltage, have of electromagnetic Induction, direction of induced E.M.F. Basic Electronics: Number systems & Their conversion used in digital electronics, De morgan's theorem, Logic Gates, half and full adder circuits, R-S flip flop, I-K flip flop. Introduction to Semiconductors, Diodes, V-I characteristics.

Transistors: BJT- Construction, biasing and operation in active region, JFET- Construction and biasing, JFET Characteristics. MOSFET: Depletion and Enhancement type MOSFET, MESFET. Shift Registers: SISO, SIPO, PISO, PIPO. Left Right shift Registers, Counters: classification of counters, Ripple counter, parallel counters, BCD counters, combination of modular counters.

Unit 😘

Operational Ampiniers: Differential Ampinier. De aux 175 aux 1

Course outcomes:

The final outcome of the subject will result into an enhancement in understanding the basic concepts of Core Electrical Engineering subjects. The topics covered under this subject will help to enhance the basic understanding of Electrical machines and power systems and basic electronics.

List of experiments/demonstrations:

- Basic safety precautions. Introduction and use of measuring instruments voltmeter, ammeter,
- Measuring the steady-state and transient time-response of R-L, R-C, and R-L-C circuits to a step change in voltage (transient may be observed on a storage oscilloscope). Sinusoidal steady state response of R-L, and R-C circuits impedance calculation and verification. Observation of phase differences between current and voltage. Resonance in R-L-C circuits.
- Transformers: Observation of the no-load current waveform on an oscilloscope (non-sinusoidal wave-shape due to B-H curve nonlinearity should be shown along with a discussion about harmonics). Loading of a transformer: measurement of primary and secondary voltages and currents, and power.
- Determination of equivalent circuit parameters of a single phase transformer by O.C. and S.C. tests and estimation of voltage regulation and efficiency at various loading conditions and
- Verification by load test.
 Demonstration of cut-out sections of machines: dc machine (commutator-brush arrangement), induction machine (squirrel cage rotor), synchronous machine (field winging slip ring arrangement) and single-phase induction machine.
- · Torque Speed Characteristic of separately excited dc motor.
- Synchronous speed of two and four-pole, three-phase induction motors. Direction reversal by change of phase-sequence of connections. Torque-Slip Characteristic of an induction motor. Generator operation of an induction machine driven at super- synchronous speed.
- * Synchronous Machine operating as a generator: stand-alone operation with a load. Control of voltage through field excitation.
- Study of V-I Characteristics of Diodes.
- · Applications of Diodes and their verification.
- Transistor applications as amplifier and switch.
- · Verification of truth table for various gates, Flip-Flops.
- Realizations of Various gates, Flip-Flops etc.
- * Verification of De morgan's theorems.

References

14 Luclu

0/

D.P. Kothari & I.J. Nagrath, Basic Electrical Engineering, Tata McGraw Hill, latest edition.

2. Singh, Basic Electrical Engineering, P.H.I.,2013

2. Rajendra Prasad. Fundamentals of Electrical Engineering, Prentice Hall, 2014
3. Rajendra Prasad. Fundamentals of Electrical Engineering, Prentice Hall, 2014

4. M.S. Sukhija, T. K. Nagsarkar, Basic Electrical and electronics engineering, Oxford University

5. C.L. Wadhwa, Basic Electrical Engineering. New Age International.

INSTITUTE OF ENGINEERING AND AND DGCTOR HARISINGH GOUR VISHWAVIDYALAYA, SAGAR (M.P.) 470003 (A CENTRAL UNIVERSITY)

New Scheme Based On AICTE Flexible Curricula

B.Tech. First Year (I Semester)

	B.Tech. First Year (I Seme	ster)
BT MEC 101 Engineering Gr	aphics 2L	-0T-1P 3Credits
Objective		te into

Course Objective: All phases of manufacturing or construction require the conversion of new ideas and design concepts into the basic line language of construction require the conversion of new ideas and design concepts into the basic line language of graphics. Therefore, there are many areas (civil, mechanical, electrical, architectural and industrial) is subject. architectural and industrial) in which the skills of the CAD technicians play major roles in the design and development of new products are development of new products or construction. Students prepare for actual work situations through practical training in a new state-of-the actual tenining in a new state-of-the-art computer designed CAD laboratory using engineering software. This course is designed to address. course is designed to address;

- to prepare you to design a system, component, or process to meet desired needs within realistic constraints, such as a section of process to meet desired needs within realistic constraints, such as a section of the s constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability
- to prepare you to use the techniques, skills, and modern engineering tools nELECTRONIC AND COMMUNICATION ENGINEERINGssary for engineering practice

Course Contents:

Traditional Engineering Graphics: Principles of Engineering Graphics; Orthographic Projection; Descriptive Geometry; Drawing Principles; Isometric Projection; Surface Development; Perspective; Reading a Drawing; Sectional Views; Dimensioning & Tolerances; True Length, Angle; intersection, En mest Distance.

Computer Graphics: Engineering Graphics Software; -Spatial Transformations; Orthographic Projections; Model Viewing; Co-ordinate Systems; Multi-view Projection; Exploded Assembly; Model Viewing; Animation; Spatial Manipulation; Surface Modelling; Solid Modelling; Introduction to Building

exacept the basic essential concepts, most of the teaching part can happen concurrently in the laboratory) Information Modeling (BIM)

1717 1: Introduction to Engineering Drawing covering, Principles of Engineering Graphics and their significance, usage of Drawing instruments, lettering, Conic sections including the Rectangular Hyperbola (General method only); Cycloid, Epicycloid, Hypocycloid and Involute; Scales - Plain, Diagonal and

Carbographic Projections covering, Principles of Orthographic Projections- Conventions - Projections of and lines inclined to both planes; Projections of planes inclined Planes - Auxiliary Planes;

simple annotation, dimensioning and scale. Floor plans that include: windows, doors, and fixtures such Cylinder, Pyramid, Cone – Auxiliary Views; Development of Surfaces of Right Regular Solids - Prism, Fyramid, Cylinder and Cone; Draw the sectional orthographic views of geometrical solids, objects from inclustry and dwellings (foundation to slab only)

Conventions; Isometric Views of lines, Planes, Simple and compound Solids; Conversion of exering, listing the computer technologies that impact on graphical communication, Demonstrating Properties, Draw, Modify and Dimension), Drawing Area (Background, Crosshairs, Coordinate System), Simuls Bar, Different methods of zoom as used in CAD, Select and erase objects.; Isometric Views of lines, Simple and compound Solids]

Cab Drawing consisting of set up of the drawing page and the printer, including settings, Setting up of units and drawing limits; ISO and ANSI standards for coordinate dimensioning and telerancing; Orthographic constraints, Snap to objects manually and automatically; Producing drawings by using various coordinate input entry methods to draw straight lines, Applying various ways of drawing times:

Annotations, layering & other functions covering applying dimensions to objects, applying contions to drawings; Setting up and use of Layers, layers to create drawings, Create, edit and use anized layers; Changing line lengths through modifying existing lines (extend/lengthen); Printing comments to paper using the print command; orthographic projection techniques; Drawing sectional views composite right regular geometric solids and project the true shape of the sectioned surface; Drawing annotation, Computer-aided design (CAD) software modeling of parts and assemblies. Parametric and non-tagnetric solid, surface, and wireframe models. Part editing and two-dimensional documentation of the Planar projection theory, including sketching of perspective, isometric, multiview, auxiliary, and views. Spatial visualization exercises. Dimensioning guidelines, tolerancing techniques; sioning and scale multi views of dwelling;

Demonstration of a simple team design project that illustrates Geometry and topology of concered components: creation of engineering models and their presentation in standard 2D blueprint and as 3D wire-frame and shaded solids; meshed topologies for engineering analysis and tool-generation for component manufacture; geometric dimensioning and tolerancing; Use of soliding software for creating associative models at the component and assembly levels; floor plans that are windows, doors, and fixtures such as WC, bath, sink, shower, etc. Applying colour coding thing to building drawing practice; Drawing sectional elevation showing foundation to ceiling;

1: Toduction to Building Information would

118 & Outcomes:

Introduction to engineering design and its place in society Exposure to the visual aspects of engineering design Exposure to engineering graphics standards Exposure to solid modelling Exposure to computer-aided geometric design Exposure to creating working drawings Exposure to engineering communication

Reference Books:

Bhatt N.D., Panchal V.M. & Ingle P.R., (2014), Engineering Drawing, Charotar Publishing House

Shah, M.B. & Rana B.C. (2008), Engineering Drawing and Computer Graphics,

Agrawal B: & Agrawal C. M. (2012), Engineering Graphics, TMH Publication Pearson Education

INSTITUTE OF ENGINEERING AND TECHNOLOGY DOCTOR HARISINGH GOUR VISHWAVIDYALAYA, SAGAR (M.P.) 470003 (A CENTRAL UNIVERSITY)

New Scheme Based On AICTE Flexible Curricula

B.Tech. First Year

	B. I ech. J	first Year	
BT MEC 111	Manufacturing Practices	OL-OT-1P	1 Credits

Course Objective:

Manufacturing is fundamental to the development of any engineering product. The course on Engineering Workshop Practice is intended to Workshop Practice is intended to expose engineering students to different types of manufacturing / fabrication processes, dealing with different materials such as metals, ceramics, plastics, wood, glass etc. While the actual practice of fabrication techniques is given more weightage, some lectures and video clips available on different methods of manufacturing are also included.

Course Contents:

Lectures & videos:

- 1. Manufacturing Methods- casting, forming, machining, joining, advanced manufacturing methods
- 2. CNC machining, Additive manufacturing
- 3. Fitting operations & power tools
- 4. Electrical &Electronics
- 5. Carpentry
- 6. Plastic moulding, glass cutting
- 7. Metal casting
- 8. Welding (arc welding & gas welding), brazing

Course Outcomes:

At the end of this course, students will demonstrate the ability to

- Understanding different manufacturing techniques and their relative advantages/ disadvantages with respect to different applications.
- Selection of a suitable technique for meeting a specific fabrication need.
- Acquire a minimum practical skill with respect to the different manufacturing methods and develop the confidence to design & fabricate small components for their project work and also to participate in various national and international technical competitions.
- Introduction to different manufacturing methods in different fields of engineering.
- Practical exposure to different fabrication techniques.
- Creation of simple components using different materials.
- Exposure to some of the advanced and latest manufacturing techniques being employed in the industry.

(ii) Workshop Practice:

- 1. Machine shop
- 2. Fitting shop
- 3. Carpentry
- 4. Electrical & Electronics
- 5. Welding shop
- 6. Casting
- 7. Smithy

8. Plastic moulding & Glass Cutting

Examinations could involve the actual fabrication of simple components, utilizing one or more of the techniques covered above.

Laboratory Outcomes

- Upon completion of this laboratory course, students will be able to fabricate components with their own hands.
- They will also get practical knowledge of the dimensional accuracies and dimensional tolerances possible with different manufacturing processes.
- By assembling different components, they will be able to produce small devices of their interest.

- Linke

INSTITUTE OF ENGINEERING AND TECHNOLOGY DOCTOR HARISINGH GOUR VISHWAVIDYALAYA, SAGAR (M.P.) 470003 (A CENTRAL UNIVERSITY)

New Scheme Based On AICTE Flexible Curricula

B. Tech. First Year (II Semester)

BT PHY 102	Engineering Physics 2L-1T-1	P 4 Credits
BT PHY 102	Engineering Physics 2L-1T-1	P 4 Credits

Course Contents:

UNIT 1: Wave nature of particles and the Schrodinger equation

Introduction to Quantum mechanics, Wave nature of Particles, operators, Time-dependent and time-independent Schrodinger equation for wavefunction, Application: Particle in a One dimensional Box, Born interpretation, Free-particle wavefunction and wave-packets, v_g and v_p relation Uncertainty principle.

UNIT 2: Wave optics

Huygens' principle, superposition of waves and interference of light by wave front splitting and amplitude splitting; Young's double slit experiment, Newton's rings, Michelson interferometer, Mach- Zehnder interferometer.

Farunhofer diffraction from a single slit and a circular aperture, the Rayleigh criterion for limit of resolution and its application to vision; Diffraction gratings and their resolving power.

UNIT 3: Introduction to solids

Free electron theory of metals, Fermi level of Intrinsic and extrinsic, density of states, Bloch's theorem for particles in a periodic potential, Kronig-Penney model(no derivation) and origin of energy bands. V-I characteristics of PN junction, Zener diode, Solar Cell, Hall Effec.

UNIT 4: Lasers

Einstein's theory of matter radiation interaction and A and B coefficients; amplification of light by population inversion, different types of lasers: gas lasers (He-Ne, CO₂), solid-state lasers(ruby, Neodymium), Properties of laser beams: mono-chromaticity, coherence, directionality and brightness, laser speckles, applications of lasers in science, engineering and medicine. Introduction to Optical fiber, acceptance angle and cone, Numerical aperture, V number, attenuation.

UNIT 5: Electrostatics in vacuum

Calculation of electric field and electrostatic potential for a charge distribution; Electric displacement, Basic Introduction to Dielectrics, Gradient, Divergence and curl, Stokes' theorem, Gauss Theorem, Continuity equation for current densities; Maxwell's equation in vacuum and non-conducting medium; Poynting vector.

List of Experiment

- To determine the dispersive power of prism.
- To determine the k of sodium light with the help of newton's Ring. 2.
- 3.
- YDSE (Young's double slit Experiment).
- To determine the frequency of AC mains supply. 5.
- V-I Characteristics of P-N junction diode. 6.
- To determine the Λ of diode loses by single slit diffraction. 7.
- To determine the plank's constant with the help of photocell.
- 10. Calibration of ammeter by using reference zener diode.
- 11. To study the effect of temperature on reverse saturation current in P-N junction diode and to
- 12. To determine the K of sodium by using plane diffraction grating.
- 13. To determine the prominent lines of mercury source by plane diffraction grating.
- 14. To determine the numerical aperture of an optical fiber.
- 15. To determine κ of given laser by plane diffraction grating.

Suggested Reference Books

- 1. A. Ghatak, Optics.
- 2. O. Svelto, Principles of Lasers.
- 3. David Griffiths, Introduction to Electrodynamics.
- 4. D.J. Griffiths, Quantum Mechanics.
- 5. Halliday & Resnick, Physics.

INSTITUTE OF ENGINEERING AND TECHNOLOGY DOCTOR HARISINGH GOUR VISHWAVIDYALAYA, SAGAR (M.P.) 470003 (A CENTRAL UNIVERSITY)

New Scheme Based On AICTE Flexible Curricula

B. Tech. First Year (II Semester)

	ŕ	
MACRYYM		
MATHEMATICS-II		
MEC 102 MATHEMATICS-II	A 14	Cualife
(BT MI)	3L-1T-0P	4 Credits
The chienting		

OBJECTIVES: The objective of this course is to familiarize the prospective engineers with techniques in OBJECT and partial differential equations, complex variables and vector calculus. It aims to equip the ordinary to deal with advanced level of mathematics and applications that would be essential for their disciplines. More precisely, the objectives are:

1. To introduce effective mathematical tools for the solutions of ordinary and partial differential equations that model physical processes.

2. To introduce the tools of differentiation and integration of functions of complex variable that are used in various techniques dealing engineers. in varioustechniques dealing engineering problems.

3. To acquaint the student with mathematical tools available in vector calculus needed various field of science andengineering.

Course Contents:

UNIT 1: Ordinary Differential Equations I: (6 hours): Differential Equations of First Order and First Degree (Leibnitz linear, Bernoulli's, Exact), Differential Equations of First Order and Higher Degree, Higher order differential equations with constants coefficients, Homogeneous Linear Differential equations, Simultaneous Differential Equations.

UNIT 2: Ordinary differential Equations II: (8 hours) : Second order linear differential equations with variable coefficients, Method of variation of parameters, Power series solutions; Legendre polynomials, Bessel functions of the first kind and their properties.

UNIT 3: Partial Differential Equations: (8 hours): Formulation of Partial Differential equations, Linear and Non-Linear Partial Differential Equations, Homogeneous Linear Partial Differential Equations with Constants Coefficients.

UNIT 4: Functions of Complex Variable: (8 hours): Functions of Complex Variables: Analytic Functions, Harmonic Conjugate, Cauchy-Riemann Equations (without proof), Line Integral, Cauchy-Goursat theorem (without proof), Cauchy Integral formula (without proof), Singular Points, Poles & Residues, Residue Theorem, Application of Residues theorem for Evaluation of Real Integral (Unit Circle).

UNIT 5: Vector Calculus: (10 hours): Differentiation of Vectors, Scalar and vector point function, Gradient, Geometrical meaning of gradient, Directional Derivative, Divergence and Curl, Line Integral, Surface Integral and Volume Integral, Gauss Divergence, Stokes and Green theorems.

Textbooks/References:

Textbooks and R.L. Finney, Calculus and Analytic geometry, 9th Edition, Pearson, Reprint, 1. G.B.

2002. Erwin kreyszig, Advanced Engineering Mathematics, 9th Edition, John Wiley & Sons, 2006.

W. E. Boyce and R. C. DiPrima, Elementary Differential Equations and Boundary Value Problems, 9th 3. Wiley India, 2009. Edn., Wiley India, 2009.

Edn., Wiley India, 1984.

4. S. E. A. Coddington, An Introduction to Ordinary Differential Equations, Prentice Hall India, 1995.

INSTITUTE OF ENGINEERING AND TECHNOLOGY DOCTOR HARISINGH GOUR VISHWAVIDYALAYA, SAGAR (M.P.) 470003 (A CENTRAL UNIVERSITY) New Scheme Based On AICTE Flexible Curricula

B. Tech. First Year (II Semester)

BT MEC 102	Basic Mechanical			_
BT WIEC 102	Engineering	3L-0T-1P	4 Credits	
Objectives:	O			_

To develop the following among students:

- An ability to design and conduct experiments, as well as to analyze and interpret data
- A knowledge of mathematics, science, and engineering

Ability to communicate effectively

An understanding of professional and ethical responsibility

Ability to use techniques, skills, and modern engineering tools necessary for engineering practice

An ability to function on multi-disciplinary teams

Materials: Classification of engineering material, Composition of Cast iron and Carbon steels, Iron Carbon diagram. Alloy steels their applications. Mechanical properties like strength, hardness, toughness, ductility, brittleness, malleability etc. of materials, Tensile test- Stress-strain diagram of ductile and brittle materials, Hooks law and modulus of elasticity, Hardness and Impact testing of materials, BHN etc.

Unit II:

Measurement: Concept of measurements, errors in measurement, Temperature, Pressure, Velocity, Flow strain, Force and torque measurement, Vernier caliper, Micrometer, Dial gauge, Slip gauge, Sine-bar and Combination

Production Engineering: Elementary theoretical aspects of production processes like casting, carpentry, welding etc Introduction to Lathe and Drilling machines and their various operations.

Unit III:

Fluids: Fluid properties pressure, density and viscosity etc. Types of fluids, Newton's law of viscosity, Pascal's law, Bernoulli's equation for incompressible fluids, Only working principle of Hydraulic machines, pumps, turbines, Reciprocating pumps.

Unit IV:

Thermodynamics: Thermodynamic system, properties, state, process, Zeroth, First and second law of thermodynamics, thermodynamic processes at constant pressure, volume, enthalpy & entropy.

Steam Engineering: Classification and working of boilers, mountings and accessories of boilers, Efficiency and

performance analysis, natural and artificial draught, steam properties, use of steam tables.

Unit V:

Reciprocating Machines: Working principle of steam Engine, Carnot, Otto, Diesel and Dual cycles P-V & T-S

Reciprocating machines: Working of Two strates as The Carnot, Otto, Diesel and Dual cycles P-V & T-S geciprocal and its efficiency, working of Two stroke & Four stroke Petrol & Diesel engines. Working principle of diagrams and its efficiency, working of Two stroke & Four stroke Petrol & Diesel engines. compressor.

List of Suggestive Core Experiments:

List of Sugar related Eight to Ten experiments including core experiments as follows:

Theory related Eight to Ten experiments including core experiments as follows:

1. Study of Universal Testing machines.

2- Linear and Angular measurement using, Micrometer, Slip Gauges, Dial Gauge and Sine-bar. 3- Study of Lathe Machine.

4- Study of Drilling Machines.

5- Verification of Bernoulli's Theorem.

6- Study of various types of Boilers.

7- Study of different IC Engines.

8. Study of different types of Boilers Mountings and accessories.

Reference Books:

1- Kothandaraman & Rudramoorthy, Fluid Mechanics & Machinery, New Age.

2- Nakra & Chaudhary, Instrumentation and Measurements, TMH.

3- Nag P.K, Engineering Thermodynamics, TMH.

4- Ganesan, Internal Combustion Engines, TMH.

5- Agrawal C M, Basic Mechanical Engineering ,Wiley Publication.

INSTITUTE OF ENGINEERING AND TECHNOLOGY DOCTOR HARISINGH GOUR VISHWAVIDYALAYA, SAGAR (M.P.) 470003 (A CENTRAL UNIVERSITY)

New Scheme Based On AlCTE Flexible Curricula

B. Tech. First Year (II Semester)

	Basic Civil E			_
BT CEE 102	Basic Civil Engineering & Mechanics	3L-0T-1P	4 Credits	

Objectives:

an ability to apply knowledge of mathematics, science, and engineering

an ability to design and conduct experiments, as well as to analyze and interpret data

an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability

an ability to function on multidisciplinary teams

an ability to identify, formulate, and solve engineering problems

Building Materials & Construction: Stones, bricks, cement, lime, timber-types, properties, test & uses, laboratory tests concrete and mortar Materials: Workability, Strength properties of Concrete, Nominal proportion of Concrete preparation of concrete, compaction, curing. Elements of Building Construction, Foundations conventional spread footings, RCC footings, brick masonry walls, plastering and pointing, floors, roofs, Doors, windows, lintels, staircases - types and their suitability

Unit II

Surveying & Positioning: Introduction to surveying Instruments – levels, the dolites, plane tables and related devices. Electronic surveying instruments etc. Measurement of distances - conventional and EDMmethods, measurement of directions by different methods, measurement of elevations by different methods. Reciprocal leveling.

Mapping & sensing: Mapping details and contouring, Profile Cross sectioning and measurement of areas, volumes, application of measurements in quantity computations, Survey stations, Introduction of remote sensing and its applications. Engineering Mechanics

Forces and Equilibrium: Graphical and Analytical Treatment of Concurrent and non-concurrent Co-planner forces, free Diagram, Force Diagram and Bow's notations, Application of Equilibrium Concepts: Analysis of plane Trusses: Method of joints, Method of Sections.

Frictional force in equilibrium problems

Unit - V Centre of Gravity and moment of Inertia: Centroid and Centre of Gravity, Moment Inertia of Area and Mass, Radius of Gyration, Introduction to product of Inertia and Principle Axes. Support Reactions, Shear force and bending moment Diagram for Cantilever & simply supported beam with concentrated, distributed load and Couple.

Reference Books:

S. Ramamrutam & R.Narayanan; Basic Civil Engineering, Dhanpat Rai Pub.

prasad I.B., Applied Mechanics, Khanna Publication.

2. Punnia, B.C., Surveying, Standard book depot.

3. Shesha Prakash and Mogaveer; Elements of Civil Engg & Engg. Mechanics; PHI

4. S.P.Timoshenko, Mechanics of stricture, East West press Pvt.Ltd.

List of suggestive core Experiments:

Students are expected to perform minimum ten experiments from the list suggested below by preferably selecting experiments from each unit of syllabus.

- 1. To perform traverse surveying with prismatic compass, check for local attraction and determine corrected bearings and to balance the traverse by Bowditch's rule.
- 2. To perform leveling exercise by height of instrument of Rise and fall method.
- 3. To measure horizontal and vertical angles in the field by using Theodolite.
- To determine (a) normal consistency (b) Initial and Final Setting time of a cement Sample.
- 4. To determine the workability of fresh concrete of given proportions by slump test or compaction factor 5. To determine the workability of fresh concrete of given proportions by slump test or compaction factor
- 6. To determine the Compressive Strength of brick.
- 7. To determine particle size distribution and fineness modulus of course and fine Aggregate.
- 8. To verify the law of Triangle of forces and Lami's theorem.
- 9. To verify the law of parallelogram of forces.
- 10. To verify law of polygon of forces
- 11. To find the support reactions of a given truss and verify analytically.
- 12. To determine support reaction and shear force at a given section of a simply Supported beam and verify in analytically using parallel beam apparatus.
- 13. To determine the moment of inertia of fly wheel by falling weight method.
- 14. To verify bending moment at a given section of a simply supported beam.

INSTITUTE OF ENGINEERING AND TECHNOLOGY DOCTOR HARISINGH GOUR VISHWAVIDYALAYA, SAGAR (M.P.) 470003 (A CENTRAL UNIVERSITY) New Scheme Based On AICTE Flexible Curricula

B. Tech. First Year (II Semester)

	7	(11 Semester)		
102	Basic Computer			
BT CSE 102	Engineering	3L-0T-1P	4 Credits	ı
181				

Objectives: The main objectives are to equip students to undertake careers involving challenges of working on real-Objectives: The control of the equip students to undertake careers involving challenges of working on real-world problems, while innovating with their core competency in computer science. The curriculum gives due importance foundational aspects of computer science, as well as details for world problems, world problems, world problems, as well as develops in students the necessary engineering skills for the spring emerging technological challenges. The program of the spring emerging technological challenges are the program of the spring emerging technological challenges. the foundation of the foundati addressing emerging concepts and processes in different domains. Students can opt for specializations which the a coherent and increasingly sophisticated understanding. the understanding a coherent and increasingly sophisticated understanding so as to enable them to pursue preferred career provide. The program will produce a well prepared and understanding so as to enable them to pursue preferred career provide a construction. The program will produce a well prepared and well-motivated workforce to undertake careers in research opportunities. In a series a well prepared and well-motivated workforce to use of industry involving innovation, knowledge creation, engineering, and entrepreneurship.

UNIT I UNII Computer: Definition, Classification, Organization i.e. CPU, register, Bus architecture, Instruction set, Memory & Contents I/O Devices and System & April 1997 (Systems I/O Devices and System & April 1997) Computer Systems, I/O Devices, and System & Application Software. Computer Application in e- Business, Bio-Storage Systematics, health Care, Remote Sensing & GIS, Meteorology and Climatology, Computer Gaming, Multimedia and Animation etc.

Operating System: Definition, Function, Types, Management of File, Process & Memory. Introduction to MS word, MS powerpoint, MS Excel

Introduction to Algorithms, Complexities and Flowchart, Introduction to Programming, Categories of Programming Languages, Program Design, Programming Paradigms, Characteristics or Concepts of OOP, Programming VS object oriented Programming. Introduction to C++: Character Set, Tokens, Precedence and Associability, Program Structure, Data Types, Variables, Operators, Expressions, Statements and control structures, I/O operations, Array, Functions,

Object & Classes, Scope Resolution Operator, Constructors & Destructors, Friend Functions, Inheritance, Polymorphism, Overloading Functions & Operators, Types of Inheritance, Virtual functions. Introduction to Data

Structures.

NIT IV Networking: Introduction, Goals, ISO-OSI Model, Functions of Different Layers. Internetworking Computer Devices, TCP/IP Model. Introduction to Internet World Viv. Computer Networks, TCP/IP Model. Introduction to Internet, World Wide Web, E-commerce Computer Security Concepts, Introduction to viruses, worms, malware, Trojane Security 1965; Introduction to Viruses, World Wide Web, E-commerce Computer Security 1965; Introduction to Viruses, World Wide Web, E-commerce Computer Security 1965; Introduction to Viruses, World Wide Web, E-commerce Computer Security 1965; Introduction to Viruses, World Wide Web, E-commerce Computer Security 1965; Introduction to Viruses, World Wide Web, E-commerce Computer Security 1965; Introduction to Viruses, World Wide Web, E-commerce Computer Security 1965; Introduction to Viruses, World Wide Web, E-commerce Computer Security 1965; Introduction to Viruses, World Wide Web, E-commerce Computer Security 1965; Introduction to Viruses, World Wide Web, E-commerce Computer Security 1965; Introduction to Viruses, World Wide Web, E-commerce Computer Security 1965; Introduction to Viruses, World Wide Web, E-commerce Computer Security 1965; Introduction to Viruses, World Wide Web, E-commerce Computer Security 1965; Introduction to Viruses, World Wide Web, E-commerce Computer Security 1965; Introduction to Viruses, World Wide Web, E-commerce Computer Security 1965; Introduction to Viruse Security 1965; Introd Concepts, Description to Viruses, worms, malware, Trojans, Spyware and Anti-Spyware Software, Different types Basics: like Money Laundering, Information Theft Cuber Basics gasics: Introduction Money Laundering, Information Theft, Cyber Pornography, Email spoofing, Denial of Service of altacks Cyber Stalking, Logic bombs, Hacking Spanning Cyber Stalking, Cyber Pornography, Email spoofing, Denial of Service of attacks like Cyber Stalking, Logic bombs, Hacking Spamming, Cyber Pornography, Email spoofing, Denial of Service (DoS), Cyber Stalking, Logic bombs, Hacking Spamming, Cyber Defamation, pharming Security measures (DoS), Computer Ethics & Good Practices, Introduction of Cyber Defamation, pharming Security measures (DoS), Cyber Defamation, pharming Security measures (DoS), Cyber Laws about Internet Fraud, Good Computer Firewall, Habits. Security Habits.

UNIT V
pata base Management System: Introduction, File oriented approach and Database approach, Data Models,
pata base Management System. Data independent of Database System. Data independent of Database System. pata base in Database System, Data independence, Data dictionary, DBA, Primary Key, Data definition Architecture and Manipulation Languages. Archive and Manipulation Languages.

language and computing: definition, cloud infrastructure, cloud segments or service delivery models (IaaS, PaaS and Cloud deployment models/ types of cloud (cont.) Cloud companies, State in astructure, cloud segments or service delivery models (IaaS, PaaS and SaaS), cloud deployment models/ types of cloud (public, private, community and hybrid clouds), Pros and Cons of cloud computing

List of Experiment

- 01. Study and practice of Internal & External DOS commands.
- 01. Study and practice of Basic linux Commands ls, cp, mv, rm, chmod, kill, ps etc.
- 02. Study and Practice of MS windows Folder related operations, My-Computer, window 03. Study and Practice of MS windows Folder related operations, My-Computer, window explorer, Control Panel,
- 04. Creation and editing of Text files using MS- word.
- 05. Creation and operating of spreadsheet using MS-Excel.
- 06. Creation and editing power-point slides using MS- power point
- 07. Creation and manipulation of database table using SQL in MS-Access.
- 08.WAP to illustrate Arithmetic expressions 09. WAP to illustrate Arrays.: WAP to illustrate constructor & Destructor, WAP to 109. WAF to illustrate Object and classes., WAP to illustrate Operator overloading, WAP to illustrate Function overloading, WAP to illustrate Derived classes & Inheritance, WAP to insert and delete and element from the Stack
- 10.WAP to insert and delete and element from the Queue
- 11.WAP to insert and delete and element from the Linked List

Recommended Text Books:

- 1. Fundamentals of Computers: E Balagurusamy, TMH
- 2. Basic Computer Engineering: Silakari and Shukla, Wiley India
- 3. Fundamentals of Computers: V Rajaraman, PHI
- 4. Information Technology Principles and Application: Ajoy Kumar Ray & Tinku Acharya PHI.
- 5. Introduction of Computers: Peter Norton, TMH.

INSTITUTE OF ENGINEERING AND TECHNOLOGY DOCTOR HARISINGH GOUR VISHWAVIDYALAYA, SAGAR (M.P.) 470003 (A CENTRAL UNIVERSITY) New Scheme Based On AICTE Flexible Curricula

B. Tech. First Year (II Semester)

T HUNI 102	Car (11 Semester)	
Seminars	0L-0T-1P	1 Credits
aree objective: This course inter-		1 Cituits

Course objective: This course intends to impart practical training in the use of English Language Course objection for Communicative purposes and aims to develop students' personality through language

Topics to be covered in the Language laboratory sessions:

- 1. Introducing oneself, family, social roles.
- 2. Public Speaking and oral skills with emphasis on conversational practice, extempore speech, JAM(Just a minute sessions), describing objects and situations, giving
- 3. Reading Comprehension: Intensive reading skills, rapid reading, and reading aloud (Reading materialto be selected by the teacher).
- 4. To write a book review. Standard text must be selected by the teacher.
- 5. Role plays: preparation and delivery topic to be selected by teacher/faculty.

. Ashish Vesno

Prof. S.K. Tomas MJPRU Bareilly

Brf. Ranseer Ceman)

Prof. Mukesh Kumar

IIT Indore

(hof. R. K. Gaugele)