${\bf DOCTOR\; HARISINGH\; GOUR\; VISHWAVIDYALAYA, SAGAR-(M.P.)}$

(A CENTRAL UNIVERSITY)
DEPARTMENT OF PHYSICS

DEPARTMENT OF PHYSICS

POSTGRADUATE PROGRAMME M. Sc. in PHYSICS

(Courses effective from Academic Session 2020-2021)

SYLLABI OF COURSES TO BE OFFERED (As per Ordinance 22 (B))

SCHOOL OF MATHEMATICAL AND PHYSICAL SCIENCES
DOCTOR HARISINGH GOUR VISHWAVIDYALAYA, SAGAR (M.P.) 470003
(A CENTRAL UNIVERSITY)

100M @

Page 1 of 55

(A CENTRAL UNIVERSITY)
DEPARTMENT OF PHYSICS

PREAMBLE

Physics is the most basic of the natural sciences. It is concerned with understanding the world on all scales of length, time, and energy. The methods of physics are diverse, but they share a common objective to develop and refine fundamental models that quantitatively explain observations and the results of experiments. The discoveries of physics, exemplified by the laws of physics, rank among the most important achievements of human inquiry, and have an enormous impact on human culture and civilization.

The story of physics has been of people who thought outside the box. From Galileo and Newton in the 1600s to Einstein and Feynman in the 20th century, the progress of science in answering fundamental questions about the Nature is rooted in a different way of approaching things. A scientific way to test the validity of a physical theory, using a methodical approach to compare the implications of the theory in question with the associated conclusions drawn from experiments and observations conducted to test it.

The M.Sc. Physics is a rigorous study program at post graduate level covering both the depth and breadth of all relevant areas, and provides substantial research training. It is designed to impart a thorough knowledge of the fundamental principles of the several branches of physics, as mathematically and experimentally demonstrated; and also to execute with their own hands various experiments to have hands-on experience with the tools and methods of physics, not simply with the concepts. The program aims to train future generations of physicists with specialization in the frontier areas of research.

Besides training the future generations of physicists, the programme aims at imparting training in instrumentation and communication skills for all round development of students.

The programme consists of **60** credits in core area of physics, **16** credits for elective courses in physics and **four (4)** credits for interdepartmental course. Compulsory **ten (10)** credits have been assigned to communication skills and seminars. Thus, a total of **90** credits are required to complete the M. Sc. Programme in Physics. Instrumentation Skill Development and Scientific Communication Skill are unique features of the curriculum for overall skill development of the students. Eight credits have been assigned to seminars equally spread over the four semesters with an aim for better comprehension and communicative skills required for academic field. The project assignment in the fourth semester will strengthen the students' ability for independent study and develop interest into research.

The M.Sc. (Physics) is a Post Graduate four semester programme spanning over duration two years.

S.No.	Nature of Courses	Credits
1.	Core Courses	60
2.	Departmental Elective Courses	16
3.	Departmental Skill Enhancement Courses	10
4.	Open Elective Courses	04
	(from other Departments)	
	Total	90

[A] Scheme of Examination :

S.No.	Nature of Exam	Marks
1.	Mid Semester Examination	20
2.	Internal Assessment	20
3.	End Semester Examination	60
	Total	100

(A CENTRAL UNIVERSITY)
DEPARTMENT OF PHYSICS

[B] Assessments:

i) Internal Assessment:

a) Theory:

Each theory course must clearly mention the methodology of assessment i.e. assignment, presentation, group discussion etc depending on the number of students in the class and feasibility of adopting a particular methodology. The distribution of marks for internal assessments shall be as follows;

(i) Evaluation of the assignment, :

presentation, group discussion etc : 15 Marks
(ii) Attendance : 05 Marks

The marks for attendance shall be awarded as follows:

75 % and Below 00 Mark (i) (ii) >75 % and upto 80 % 01 Mark >80 % and upto 85 % 02 Marks (iii) >85 % and upto 90 % 03 Marks (iv) >90 % and upto 95 % 04 Marks (v) >95 % and 05 Marks (vi)

The introductory note must also mention that to be eligible to appear in End Semester Examination a student must appear in Mid Semester Examination and internal Assessment.

b) Practical/ Lab Courses:

(i) Performing and getting the experiment checked regularly : 15 Marks and incorporating the suggestion in the practical note book

(ii) Attendance : 05 Marks

The marks for attendance shall be as follows:

75 % and Below 00 Mark (i) 01 Mark >75 % and upto 80 % (ii) (iii) >80 % and upto 85 % 02 Marks >85 % and upto 90 % : 03 Marks (iv) >90 % and upto 95 % 04 Marks (v) (vi) >95 % and 05 Marks

(A CENTRAL UNIVERSITY)
DEPARTMENT OF PHYSICS

[C] End Semester Examination for Practical/ Lab Courses:

It will consist of 60 marks as follows:

(a) Assessment of performance in the Experiment : 50 Marks (b) Viva-Voce of Experiment : 10 Marks

[D] Evaluation of Projects:

It will be based on periodic assessment of the progress of the project and End Semester Examination as follows:

(i) First periodic assessment of the progress after 08 weeks
 (ii) Second periodic assessment after 04 weeks
 20 Marks
 20 Marks

(iii) End Semester Examination will consist of

(a) Evaluation of the project report : 50 Marks (b) Viva-Voce of the project report : 10 Marks

[E] Evaluation of Seminars:

Documentation for the seminar
 First presentation of the seminar
 End Semester Examination
 20 Marks
 60 Marks

End Semester Examination will consists:

(i) Presentation of the seminar: 50 Marks(ii) Defense of the presentation: 10 Marks

Attendance: 75 % attendance in a course is mandatory for a student to appear in end semester examination.

Syllabi of M.Sc. (Physics)

The detail of the course structure with code, title and the credits assigned to each course is given below.

(A CENTRAL UNIVERSITY)
DEPARTMENT OF PHYSICS

M. Sc. (Physics) : Session 2020-2021 Course structure

Semester – I	Compulsory Courses (22 Credits)	L	T	P	C
PHY CC 121	Mathematical Physics	3	1	0	4
PHY CC 122	Classical Mechanics	3	1	0	4
PHY CC 123	Digital Electronics and Operational Amplifiers	3	1	0	4
PHY CC 124	Atomic, Molecular and Laser Physics	3	1	0	4
PHY CC 125	Laboratory Course – I (General-I)	0	0	2	2
PHY CC 126	Laboratory Course – II (Electronics-I)	0	0	2	2
PHY SE 121	Seminar				2
		1			
Semester – II	Compulsory Courses (22 Credits)				
PHY CC 221	Quantum Mechanics	3	1	0	4
PHY CC 222	Electrodynamics and Plasma Physics	3	1	0	4
PHY CC 223	Electronic Devices	3	1	0	4
PHY CC 224	Condensed Matter Physics	3	1	0	4
PHY CC 225	Laboratory Course –III (General -II)	0	0	2	2
PHY CC 226	Laboratory Course – IV (Electronics -II)	0	0	2	2
PHY SE 221	Seminar		<u> </u>		2
		1			1
Open Elective Cor	urses				
PHY OE 221	Energy and Environment	2	0	0	2
		1	1		
Semester – III	(Compulsory Courses: 14 credits; Electives: 6/8 credits	ts)			
PHY CC 321	Statistical Mechanics	3	1	0	4
PHY CC 322	Computational Methods and Programming	3	1	0	4
PHY CC 323	Laboratory Course (Computer Programming)	0	0	2	2
PHY CC 324	Instrumentation Skill Development	0	0	2	2
PHY SE 321	Seminar				2
Elective Courses	(any two of the followings)				
PHY EC 321	Microprocessor and Microcontroller		0	1	4
		3			
PHY EC 322	Materials Science	3	1	0	4
PHY EC 323	Laser Physics and Optical Fiber	3	1	0	4
Onen Elective Cor	NWO G				
Open Elective Cou	Nanomaterials and Nanotechnology	2	0	0	2
Semester – IV	(Core: 12 credits; Electives: 10/8 credits)		U	U	2
PHY CC 421	Advanced Quantum Mechanics	3	1	0	4
PHY CC 422	Nuclear and Particle Physics	3	1	0	4
PHY SE 423	Digital Communication Skills Development	0	0	2	2
		10	U		
PHY SE 422 Seminar 2					
Elective Courses (any two of the followings)					
PHY EC 421	VLSI Design	3	0	1	4
PHY EC 422	Physics of Nanomaterials	3	1	0	4
PHY EC 423	Plasma Physics	3	1	0	4
PHY EC 425	Project				4

The students must earn at least **4** credits from other departments. The detailed syllabi of the courses are given on pages from 4 to 45.

(A CENTRAL UNIVERSITY)
DEPARTMENT OF PHYSICS

M.Sc. (Physics): I Semester SESSION: 2020-21

	Core Course	L	T	P	C
PHY CC 121	Mathematical Physics	3	1	0	4

Objective : This paper enable students to understand the various mathematical tools which are applied in various branches of physics.

UNIT – I

Differential equations and special functions: Second order linear ODEs with variable coefficient, solutions by series expansion; Legendre, Bessel equations, generating functions, recursion relations.

(Lectures - 9 + Tutorials - 3)

UNIT - II

Integral Transforms: Laplace transforms, first and second shifting theorems, Inverse LT by partial fractions, LT of derivatives, and integral of functions, Fourier transform, Fourier Integral and transform of delta functions.

(Lectures – 9 + Tutorials - 3)

UNIT – III

Green's functions: Non- homogenous boundary value problems, Green's function for one dimensional problem, Eigen function expansion of Green's function.

(Lectures -9 + Tutorials - 3)

UNIT – IV

Green's function for electrostatic boundary value problems and quantum mechanical scattering problem.

Complex Variables: Analyticity of complex functions, Cauchy Riemann equations.

(Lectures -9 + Tutorials - 3)

UNIT – V

Couchy theorem, Cauchy integral formula, Taylors, Maclaurin, Laurent series. Theorem of residues, simple cases of contour integration, Jordan's lemma.

(Lectures -9 + Tutorials - 3)

Expected outcomes: students can solve the mathematical problems using these learninges in various branches of physics and Engineering and research eerier.

Essential Readings:

- 1. Mathematical Methods for Physicists G.B. Arfken & H.J. Weber, ELSEVIER Academic Press
- 2. Applied Mathematics for Engineers and Physicists LA Pipes II ed. McGraw Hill Book Company
- 3. Mathematical Physics Satya Prakash –Sultan Chand and Sons, 5 Ed. revised New Delhi, 2011.

Suggested Readings:

- 4. Mathematical Physics –B.S. Rajput, 10th Ed. Pragati Prakashan, 1994.
- 5. Mathematical Physics B.D. Gupta II Ed., Vikas Publishing House, 1999.
- 6. Advanced Engineering Mathematics Erwin Kreyszig, Wiley International 9th Ed.
- 7. Mathematical Physics P.K. Chattopadhyay 1st Edition, Wiley Eastern Limited, 1992.

Suggested e-books:

- 8. Introduction to methods of applied Mathemiatics by sean Mauch. Link:its.caltech.edu./sean
- 9. Handbook of Mathematics for Engineers and scientists by A.D. Polyanin and A.V. Manzhirov, chapman and Hall/CRC.

- https://www.e-booksdirectory.com/listing.php?category=2
- http://www.motionmountain.net/?gclid=CjwKCAjwmq3kBRB_EiwAJkNDp5v8Yy6xK1s0Kma0VR0AWGlichRwFfCC0-vpZK1jrPoEOAnBq8fcqRoClLsQAvD_BwE
- https://www.sciencebooksonline.info/physics.html
- http://www.cambridgeindia.org/
- https://bookboon.com/en/physics-ebooks

(A CENTRAL UNIVERSITY)
DEPARTMENT OF PHYSICS

M.Sc. (Physics): I Semester SESSION: 2020-21

Core CourseLTPCPHY CC 122Classical Mechanics3104

Objective: Student should be familiar with Newtonians mechanics and other from of mechanics based on principle of least action like Hamiltonian and lagarangain mechanics, current syllabus serves this purpose.

UNIT – I

Newtonian mechanics of one and many particles systems, Conservation laws, constraints and their classification, principle of virtual work.

D' Almbert's principle in generalized coordinates, The Lagrange's equation from D' Almbert's principle. (Lectures – 9 + Tutorials - 3)

UNIT – II

Hamilton's principle, Hamilton's principle from Lagrange's equation. Generalized momenta and Lagrangain formulation of the conservation theorems, Reduction to the equivalent one body problem; the equation of motion and first integrals, the differential equation for the orbit.

(Lectures -9 + Tutorials - 3)

UNIT - III

The equations of canonical transformation and generating functions. Hamilton - Jacobi theorem, Action and angle variables.

Poisson's brackets, simple algebraic properties of Poisson's brackets. The equation of motion in Poisson's Brackets notation. Poissons theorem, Principle of least action.

(Lectures - 9 + Tutorials - 3)

UNIT - IV

Theory of small oscillations, Equations of motion, Eigen frequencies and general motion, normal modes and coordinates.

Elementary treatment of Eulerian coordinates and transformation matrices. Angular momentum inertia tensor, torque free motion for a rigid body. (Lectures -9 + Tutorials - 3)

UNIT - V

Covariant four dimensional formulation, 4-vectors and 4-scalers, Relativistic generalization of Newton's laws, 4-momentum and 4-force, Variance under Lornetz transformation, relativistic mechanics, covariant Lagrangian, covariant Hamiltonian. (Lectures – 9 + Tutorials - 3)

Expected outcome: Students will be familiar with Lagarangian, Hamiltonian, and Poissons bracket which will be helpful for learning Quantum Mechanics.

Essential Readings:

- 1. Classical Mechanics Godstein, Poole and Safko, 8th ed. Pearson Ed. Ltd., 2004
- 2. Classical Mechanics Rana and Joag, 11th ed. Mc Graw Hill Publication, 2003
- 3. Classical Mechanics Gupta Kumar & Sharma, 11th ed. Pragati Prakashan 11th ed.1995
- 4. Introduction to Classic al Mechanics R.C. Takwale and P.S. Puranik, TMH Pub.1994

Suggested Readings:

- 5. Classical Mechanics John R Taylor, University Sciences book.
- 6. Mechanics J.P. Dentartog, Dover Publication.
- 7. Classical Mechanics R. Douglas Gregory, Cambridge Univ. Press.
- 8. Introduction to Classical Mechanics David Morin, Cambridge Univ. Press.

(A CENTRAL UNIVERSITY)
DEPARTMENT OF PHYSICS

- 9. Classical Mechanics-Satyaprakash, Kedar Nath Ram Nath Pub. 9th Ed., 1996.
- 10. Classical Mechanics-T.W.B. Kibble, TMH Pub. Ist Ed. 1970.

- https://www.e-booksdirectory.com/listing.php?category=2
- http://www.motionmountain.net/?gclid=CjwKCAjwmq3kBRB_EiwAJkNDp5v8Yy6xK1s0Kma0VR0AWGlichRwFfCC0-vpZK1jrPoEOAnBq8fcqRoClLsQAvD_BwE
- https://www.sciencebooksonline.info/physics.html
- http://www.cambridgeindia.org/
- https://bookboon.com/en/physics-ebooks

(A CENTRAL UNIVERSITY)
DEPARTMENT OF PHYSICS

M.Sc. (Physics): I Semester SESSION: 2020-21

	Core Course	L	T	P	C
PHY CC 123	Digital Electronics & Operational Amplifier	3	1	0	4

Objective:

- 1. Understand the operation of basic digital electronic device.
- 2. Understand how to describe circuits which can process digital data.
- 3. Understand how to design circuits which can process digital data.
- 4. To understand the operation of operational amplifier by investigating common configuration.

UNIT - I

Number system and digital combinational circuits:

Binary, octal and Hexa decimal number and their inter-conversion, Addition and subtraction, Logic gates: AND, OR, NOT, NAND, NOR, XOR, XNOR, AOI gates. Binary adders: Half adder, Full adder and parallel adders. Multiplexer and Demultiplexer, Encoders and Decoders.

(Lectures - 9 + Tutorials - 3)

UNIT-II

Digital Sequential Circuits:

FLIP-FLOPS: RS-FF, JK-FF, TFF, D-FF and Master Slave flip-flop, Shift Registers: SISO, SIPO, PISO, PIPO, Left / Right shift Registers, Counters: classification of counters, Ripple counter, parallel counters, BCD counters, combination of modular counters.

(Lectures - 9 + Tutorials - 3)

UNIT – III

Operational Amplifiers:

Differential Amplifier: DC and AC analysis, CMRR Inverting and Non-inverting, Block Diagram of operational amplifier, Operational amplifiers with negative feedback: Voltage Series and Voltage shunt.

(Lectures - 9 + Tutorials - 3)

UNIT - IV

Practical operational Amplifier: Input off set voltage, input offset current, output off voltage, Input Bias current and slew rate. Oscillator: Principle, Phase shift & Wein bridge.

(Lectures - 9 + Tutorials - 3)

UNIT - V

Basic comparator, fixed voltage regulator and Adjustable regulator. D/A Conversions: Binary weighted Resistors, R-2R ladder, A/D Conversions: Successive Approximation Resister method, Dual slope, and counter method.

(Lectures - 9 + Tutorials - 3)

Outcomes: Explain concepts and terminology of digital electronics, Application of logic designs and creation. Practically understand the operation of operational amplifier through various examples. Understand the op-amp in various mode and also in ideal and practical opmp.

Essential Readings:

- 1. Opamp & Linear Integrated Ciruits Ramakant Gayakwad, 4th ed., PHI, New Delhi., 2003.
- 2. Integrated Electronic Milliman & Halkias, 10th Ed., TMH,1991
- 3. Digital Principle and Applications Malvino and Leach, 5th Ed., TMH interval, 2007

Suggested Readings:

- 1. Fundamental of Digital Electronic C. Floyd. Pearson Education Pub., 4th Ed., 2005
- 2. Modern Digital Electronic R.P. Jain, 8th Ed., TMH Pub.2000.
- 3. Digital Electronics Shiv Shankar Mishra, Salya Prakashan, Delhi

(A CENTRAL UNIVERSITY)
DEPARTMENT OF PHYSICS

- https://www.e-booksdirectory.com/listing.php?category=2
- http://www.motionmountain.net/?gclid=CjwKCAjwmq3kBRB_EiwAJkNDp5v8Yy6xK1s0Kma0VR0AWGlichRwFfCC0-vpZK1jrPoEOAnBq8fcqRoClLsQAvD_BwE
- https://www.sciencebooksonline.info/physics.html
- http://www.cambridgeindia.org/
- https://bookboon.com/en/physics-ebooks

(A CENTRAL UNIVERSITY)
DEPARTMENT OF PHYSICS

M. Sc. (Physics): I Semester SESSION: 2020-2021

	Core Course	L	T	P	<u>C</u>
PHY CC 124	Atomic, Molecular and Laser Physics	3	1	0	4

Objective: To increase the level of understanding of student the various spectra of atoms, molecules and the use of electromagnetic radiation in understanding the tiny particles and the whole universe, the can enhance the understanding of interaction of light with matter which can de used to study various properties of different kinds of materials, this is also required for materials. This is also required for NET-CSIR,ZEST,GATE etc. national level examinations.

UNIT - I

Review of one-electron and two-electron atoms: spectrum of hydrogen, helium and alkali atoms; Many electron atoms: central field approximation, Thomas-Fermi model, Slater determinant, Hartee Fock and self-consistent field methods, Hund's rule, L-S and j-j coupling, Equivalent and nonequivalent electrons, Spectroscopic terms, Lande interval rule.

(Lectures - 9 + Tutorials - 3)

UNIT - II

Interaction with Electromagnetic fields: Zeeman, Paschen Back and Stark effects; Hyperfine structure and isotope shift, selection rules; Lamb shift; Molecular spectra: rotational, vibrational, electronic, Raman and Infra-red spectra of diatomic molecules; electronic and nuclear spin, Hund's rule, Frank–Condon principle and selection rules.

(Lectures - 9 + Tutorials - 3)

UNIT - III

Molecular structure: molecular potential; Born-Oppenheimer approximation, diatomic molecules, electronic angular momenta; Approximation methods; linear combination of atomic orbitals (LCAO) approach; states for hydrogen molecular ion; shapes and term symbols for simple molecules.

(Lectures - 9 + Tutorials - 3)

UNIT - IV

Spectroscopic techniques: Infrared, Raman spectroscopy, NMR, ESR and Mossbauer spectroscopy (Principles and instrumentation) Modern developments: optical cooling and trapping of atoms, time resolved spectroscopy in the femto second regime.

(Lectures - 9 + Tutorials - 3)

UNIT - V

Lasers: spontaneous and stimulated emission, Einstein A & B coefficients. Optical pumping; population inversion, three level and four level laser system and rate equation. Optical resonators, Stability of resonators, Characteristics of Gaussian beam, He-Ne and Ruby Lasers.

(Lectures - 9 + Tutorials - 3)

Outcomes: student can qualify national level examination as wall as this can encourage them to pursue higher studies. Also through this students can understand the optical,

Essential Readings:

- 1. Physics of Atoms and Molecules, B. H. Bransden and C. J. Joachain, 2nd Ed. Pearson (2008).
- 2. Fundamentals of Molecular Spectroscopy, C. N. Banwell and E. M. McCash, 4th Ed., Tata McGraw 2004.
- 3. Elementary Atomic Structure, G. K. Woodgate, Clarendon Press 1989.
- 4. Quantum Chemistry, I. N. Levine, PHI 2009.
- 5. Elementary Quantum Chemistry, F. L. Pilar, McGraw Hill 1990.
- 6. Essentials of Lasers and Non-Linear Optics, G.D. Baruach, Ist Ed. Pragati Prakashan, 2000.
- 7. Lasers and Non-Linear Optics- B.B. Laud, 2nd Ed., New age International (P) Ltd. 1996.

Suggested Readings:

- 8. Introduction to Atomic Spectra, H. E. White, Tata McGraw Hill 1934.
- 9. Atoms, Molecules and Photons, W. Demtroder, 2nd Ed., Springer 2010.
- 10. Atomic Physics, C. J. Foot, Oxford, 2005.
- 11. Principles of Laser, O. Svelto, 4th Ed., Springer, 2008

(A CENTRAL UNIVERSITY)
DEPARTMENT OF PHYSICS

- https://www.e-booksdirectory.com/listing.php?category=2
- http://www.motionmountain.net/?gclid=CjwKCAjwmq3kBRB_EiwAJkNDp5v8Yy6xK1s0Kma0VR0AWGlichRwFfCC0-vpZK1jrPoEOAnBq8fcqRoClLsQAvD_BwE
- https://www.sciencebooksonline.info/physics.html
- http://www.cambridgeindia.org/
- https://bookboon.com/en/physics-ebooks

(A CENTRAL UNIVERSITY)
DEPARTMENT OF PHYSICS

M. Sc. (Physics): I Semester SESSION: 2020-2021 Core Course

		L	T	P	C
PHY CC 125	Laboratory Course –I (General -I)	0	0	2	2

Objective: Objective of the General Lab course is that students get aquented with General Solid State practicals get aware of optical fiber laser, resistivity, Band gap of materials, Hall effect etc.

Students have to perform of at least six practicals from the following list:

- 1. To measure the numerical aperture of an optical fiber.
- 2. To measure the diameter of the laser beam.
- 3. To measure the bending loss in a multimode fiber.
- 4. To determine the resistivity of semiconductor by four probe methods and determine band gap.
- 5. Measurement of Curie temperature for Ferro electric material.
- 6. To determine Brewster's angle by the polarization of light and to verify the cosine square law (Malu's law) for plane polarized.
- 7. To determine the wavelength of He-Ne laser using vernier caliper.
- 8. To measure Hall coefficient of given semiconductor.

Outcomes: Students after learning will get practical exposure of the basic instruments and its applications.

Link for e-Books for Physics:

- https://www.e-booksdirectory.com/listing.php?category=2
- http://www.motionmountain.net/?gclid=CjwKCAjwmq3kBRB_EiwAJkNDp5v8Yy6xK1s0Kma0VR0AWGlichRwFfCC0-vpZK1jrPoEOAnBq8fcqRoClLsQAvD_BwE
- https://www.sciencebooksonline.info/physics.html
- http://www.cambridgeindia.org/
- https://bookboon.com/en/physics-ebooks

Note: Other practical of equivalent level can be added.

(A CENTRAL UNIVERSITY)
DEPARTMENT OF PHYSICS

M.Sc. I Semester : Physics SESSION: 2020-2021 Core Course

		L	T	P	C
PHY CC 126	Laboratory Course-II (Electronics - I)	0	0	2	2

Objectives:

- 1. To know the concept of basic gated.
- 2. To know the concept of combinational circuits.
- 3. To understand the concept of FF, ADC etc.
- 4. To know the concept of operational amplifiers.

Students have to perform of at least ten practicals from the following list:

- To study the input and transfer characteristics of AND, NOT and NAND gates using IC.
- 2. Construction of basic gates (AND, OR & NOT) using universal gates.
- 3. To construct circuits of Half and Full adders and draw the truth table.
- 4. To verify Boolean identities.
- 5. To study R-S, J-K and M/S flip-flops.
- 6. To study of an Astable multivibrator using 555 timer.
- 7. To study the characteristics of R-2R ladder type D/A converter.
- 8. Study of inverting and Non-inverting OPAMP.
- 9. Study of addition and subtraction using OPAMP.
- 10. Study of integration and differentiation using OPAMP.
- 11. Study of operational amplifier 741
 - (A) To conduct input bias current measurement.
 - (B) To conduct input offset current measurement.
- 12. To determine the frequency of Wein-Bridge oscillator.
- 13. Study of regulated power supply using IC 723.

Outcomes:

1. Learn the basics of gate. 2. Construct basic combinational circuits. 3. Construct Flip Flop and converters 4. Learn the basics of opamp.. 5. Construct various application of opamp.

Link for e-Books for Physics:

- https://www.e-booksdirectory.com/listing.php?category=2
- http://www.motionmountain.net/?gclid=CjwKCAjwmq3kBRB_EiwAJkNDp5v8Yy6xK1s0Kma0VR0AWGlichRwFfCC0-vpZK1jrPoEOAnBq8fcqRoClLsQAvD_BwE
- https://www.sciencebooksonline.info/physics.html
- http://www.cambridgeindia.org/
- https://bookboon.com/en/physics-ebooks

Note: Other practical of equivalent level can be added.

(A CENTRAL UNIVERSITY)
DEPARTMENT OF PHYSICS

M.Sc. I Semester : Physics SESSION: 2020-2021

Skill Enhancement Course

PHY SE 121	Seminar	0	0	2	2	Ī
------------	---------	---	---	---	---	---

Objective: Objective of the seminar is to get student bold and present themselves in front of audience and keep their views.

This course makes a unique component of the curriculum. It is mandatory for every student to deliver a seminar of approximately 30 minutes duration on a topic as decided by the Departmental Seminar Committee.

Each and every student would get an opportunity to express his/her level of understanding of various concepts and this, apart from strengthening the subject knowledge, would help students in developing better communication skills and higher level of confidence.

The marks will be awarded by the Seminar Committee on the basis of performance in the seminar.

Outcomes: Students can present themselves.

(A CENTRAL UNIVERSITY)
DEPARTMENT OF PHYSICS

M.Sc. (Physics): II Semester SESSION: 2020-2021

Core Course L T P C

PHY CC 221 | Quantum Mechanics | 3 | 1 | 0 | 4

Objectives: This course primarily aims to provide the basic concepts of quantum mechanics and various formalism of quantum mechanics with simple examples. The angular momentum and spin dynamics of the quantum systems will be discussed. Some standard approximation techniques such as time independent perturbation, Variational method and WKB approximation for solving quantum static systems will be discussed.

UNIT – I

General Formalism of Quantum Mechanics:

Linear vector space, basis and expansion theorem, Hilbert space, linear operators, eigen values and eigen functions, Hermitian operators and their properties, postulates of quantum mechanics, simultaneous eigen functions, general uncertainty relation, Dirac's notation for state vectors, Application of operator method: simple harmonic oscillator, creation and annihilation operators.

Matrix representation of state vectors and operators, change of basis: unitary transformation, Application of matrix method: simple harmonic oscillator.

(Lectures – 9 + Tutorials - 3)

UNIT – II

Angular Momentum and Spin:

Angular momentum operators, angular momentum commutation relations, eigenvalues of L^2 and L_z . General angular momentum, eigenvalues of J^2 and J_z , angular momentum matrices, spin angular momentum, spin – ($\frac{1}{2}$) systems, spin vectors for spin – ($\frac{1}{2}$) system, Addition of angular momenta, Clebsch - Gordan coefficients. (Lectures – 9 + Tutorials - 3)

UNIT - III

Identical Particles:

Identical Particles, symmetric and anti symmetric wave functions, Pauli's exclusion principle, Slater determinant, inclusion of spin, spin functions for many electron systems. (Two and three electron systems), spin statistics connection. (Lectures -9 +Tutorials -3)

UNIT - IV

Time-Independent Approximation Method – I:

Basic concepts, non-degenerate and degenerate energy levels, Applications: ground state of Heatom, An-harmonic oscillator, Stark effect in hydrogen. (Lectures – 9 + Tutorials - 3)

UNIT - V

Time-Independent Approximation Method – II:

The Variation method: The variational principle, Rayleigh – Ritz method, Applications: ground state of He-atom, hydrogen-molecular ion and deuteron.

The WKB approximation method: WKB method, validity of WKB method, connection formula penetration of a barrier, Application: α -decay. (Lectures – 9 + Tutorials - 3)

Outcomes: After undergoing the course, students will be understanding the

- a. Basic concepts and principles of quantum mechanics.
- b. The various notations and the Schordinger & Hiesenberg formalism of quantum mechanics.
- c. Angular momentum and spin dynamics of quantum systems.
- d. Finding the energy and waves function of quantum conservative systems.

(A CENTRAL UNIVERSITY)
DEPARTMENT OF PHYSICS

Essential Readings:

- 1. Quantum Mechanics, G. Aruldhas, PHI, 2Ed., 2011.
- 2. Quantum Mechanics, E. Merzbacher, Wiley.
- 3. Quantum mechanics: Theory and Applications, A.K. Ghatak and S. lokanathan, Kluwer Academic Publishers.
- 4. Quantum Mechanics, D.J. Griffith, Prentice Hall.
- 5. Quantum Mechanics, L.I. Schiff, McGraw-Hill. 3rd Edition.

Suggested Readings:

- 1. Principles of Quantum Mechanics, R. Shankar, Springer.
- 2. Quantum Mechanics, A. Messiah, Dover.
- 3. Modern Quantum mechanics, J.J. Sakurai, Pearson Addison-Wesley.
- 4. Principles of Quantum mechanics- P.A.M. Dirac, Oxford University Press.
- 5. Quantum Mechanics PM Mathew and K Venkatesan, Mc Graw Hill 2nd Ed.
- 6. Advance Quntum Mechanics- Satya Prakash, Kedar Nath Ram nath 5th Ed., 2003.
- 7. Quantum Mechanics- SL Gupta & V. Kumar 3rd Ed. Jai Prakash Nath KG, 1976.

- https://www.e-booksdirectory.com/listing.php?category=2
- http://www.motionmountain.net/?gclid=CjwKCAjwmq3kBRB_EiwAJkNDp5v8Yy6xK1s0Kma0VR0AWGlichRwFfCC0-vpZK1jrPoEOAnBq8fcqRoClLsQAvD BwE
- https://www.sciencebooksonline.info/physics.html
- http://www.cambridgeindia.org/
- https://bookboon.com/en/physics-ebooks

(A CENTRAL UNIVERSITY)
DEPARTMENT OF PHYSICS

M. Sc. (Physics): II Semester SESSION: 2020-2021

	Core Course	L	T	P	C
PHY CC 222	Electrodynamics and Plasma Physics	3	1	0	4

Objectives: To provide students with a working knowledge of electromagnetism using the tools of classical and relativistic electrodynamics. To enhance problem. Solving and mathematical skills for MHD related concepts.

UNIT – I

Maxwell's equations, Scalar and vector potentials, gauge transformation, Lorentz gauge, Coulomb Gauge, radiations by moving charges, retarded potentials, Lienard Wiechrt potentials, fields of charged particles in uniform motion, fields of arbitrarily moving charged particle. (Lectures – 9 + Tutorials - 3)

UNIT – II

Fields of an accelerated charged particles at low velocity and high velocity, angular distribution of power radiated, Review of four vector and Lorentz transformation in 4-dimensional spaces, Invariance of electric charge, relativistic transformation properties of E and H fields. (Lectures – 9 + Tutorials - 3)

UNIT – III

Electromagnetic fields tensor in 4- dimensional Maxwell equation, Four Vector current and potential and their invariance under Lorentz transformation, convariance of electrodynamics. Langragian and Hamiltonian for a relativistic charged particle in external EM field. (Lectures – 9 + Tutorials - 3)

UNIT - IV

Elementary concept of occurrence of plasma, Gaseous and solid state plasma, Production of gaseous and solid state plasma, Plasma parameters, Plasma confinement pinch effect, instability in a pinched-plasma column, Electrical neutrality in a plasma, Debye screening distance. Plasma oscillations: Transverse oscillations and longitudinal oscillations. (Lectures – 9 + Tutorials - 3)

UNIT - V

Domain of Magnetohydordynamics and plasma Physics: Magnetohydrodynamic equations, magneto hydrodynamic waves: Magneto-sonic and Alfven waves, particle orbits motion of charged particles in electromagnetic fields, (uniform E and B Fields) and drift motion in a plasmas.

(Lectures - 9 + Tutorials - 3)

Outcomes: Students can use basic concept of plasma physics and electromagnetic theory an astrophysical plasma and space physics.

Essential Readings:

- **1.** Introduction to Electrodynamics David J. Griffiths: Benjamin Cummings 2nd Ed. Prentice Hall of India, 1993.
- 2. Introduction to Plasma Physics Chen Francis F, Springer Pub.2nd Ed.
- 3. Electrodynamics Gupta, Kumar & Singh,

Suggested Readings:

- 1. Fundamentals of Plasma Physics J.A. Bittencourt, Springer Pub. 3rd Ed.
- 2. Plasma Physics (Plasma State of Matter) S.N. Sen, Pragati Prakashan, 2006
- 3. Classical Electrodynamics Jackson: Wiley
- 4. Classical Electricity and Magnetism Pnofsky & Philips: Dover Publications.
- 5. Principle of Plasma Mechanics- B.Chakraborty, Wiley Eastern Ltd. 1978.
- 6. Electromagnetic theory & Electrodynamics- Satya Prakash New Edition, Kedar Nath Ram Nath, 2004-05.

Suggested e-books:

- 1. Classical Electrodynamics by K. Lechnes, Springer publication.
- 2. Classical Electrodynamics by Xin Tao.
- 3. Classical Electrodynamics by W. Greiner, Springer Pub.
- 4. Fundamentals of Plasma Physics by P.M. Bellan.

(A CENTRAL UNIVERSITY)
DEPARTMENT OF PHYSICS

- https://www.e-booksdirectory.com/listing.php?category=2
- http://www.motionmountain.net/?gclid=CjwKCAjwmq3kBRB_EiwAJkNDp5v8Yy6xK1s0Kma0VR0AWGlichRwFfCC0-vpZK1jrPoEOAnBq8fcqRoClLsQAvD_BwE
- https://www.sciencebooksonline.info/physics.html
- http://www.cambridgeindia.org/
- https://bookboon.com/en/physics-ebooks

(A CENTRAL UNIVERSITY)
DEPARTMENT OF PHYSICS

M. Sc. (Physics): II Semester SESSION: 2020-2021

	Core Course		L	T	P	С
PHY CC 223	Electronic	Devices	3	1	0	4

Objective:

- 1. To understand operation of semiconductor devices.
- 2. To understand the semiconductor memories.
- 3. To understand the transducer and filters.

UNIT – I

BJT: Construction, transistor biasing in active region, transistor operation in active.

JFET: Construction, Biased JFET, JFET characteristics.

MOSFET: Depletion and Enhancement type MOSFET, MESFET.

Basics of microprocessor and Microcontroller.

(Lectures - 9 + Tutorials - 3)

UNIT-II

Photonic Devices: Light dependent resistor (LDR), diode photo detectors, Solar cell (I-V characteristics, Spectral response, fill factor), LED, diode lasers.

(Lectures - 9 + Tutorials - 3)

UNIT - III

Semiconductor Memories: Memory organization, Expanding memory size, classification of memories. ROM and RAM chip. Charged compiled device (CCD) memory, content addressable memory. (**Lectures – 9 + Tutorials - 3**)

UNIT-IV

Transducers – Temperature, pressure and vibration. Measurement and control, signal conditioning system AC and DC, instrumentation amplifier. Lock in amplifier.

(Lectures - 9 + Tutorials - 3)

UNIT - V

Filters: passive and active, first order, second order. Types of filters: Butterworth, elliptic, Bessel and all-pass filters, Network analysis.

(Lectures - 9 + Tutorials - 3)

Outcomes : Demonstrate proficiency in the use of electronic equipment and devices solve electronic devices and systems.

Essential Readings:

- Instrumentation (Devices and systems): Ranjan, Mani and Sharma Tata McGraw Hill, 2nd Ed., 2000 New Delhi.
- 2. Electronic Instrumentation: H.S. Kalsi- Tata McGraw Hill, New Delhi. 1995 16th reprint 2003.
- 3. Electronic Devices and Circuits Millmant Halkia McGraw Hill, New Delhi 2002.
- 4. Electronic Devices and Circuits Raju I.K. International.

Suggested Readings:

- 1. Digital Electronics Gothman PHI, 2nd Edition, 1998.
- 2. Digital Electronics Jain (TMH-Eduction)
- 3. Electronics Devices & circuits J.S. Katre-Tech-Max Pub., Pune.

(A CENTRAL UNIVERSITY)
DEPARTMENT OF PHYSICS

- https://www.e-booksdirectory.com/listing.php?category=2
- http://www.motionmountain.net/?gclid=CjwKCAjwmq3kBRB_EiwAJkNDp5v8Yy6xK1s0Kma0VR0AWGlichRwFfCC0-vpZK1jrPoEOAnBq8fcqRoClLsQAvD_BwE
- https://www.sciencebooksonline.info/physics.html
- http://www.cambridgeindia.org/
- https://bookboon.com/en/physics-ebooks

(A CENTRAL UNIVERSITY)
DEPARTMENT OF PHYSICS

M. Sc. (Physics): II Semester SESSION: 2020-2021 Core Course

		L	T	P	C
PHY CC 224	Condensed Matter Physics	3	1	0	4

Objective : This paper is designed to teach basic structural properties of crystal and their classification. This paper also provides basic information to student about band formation in conductor, semiconductor, insulator and superconductors.

UNIT – I

Crystal Structure: Symmetry, crystal system, Bravais lattice, concept of point group, space group, Miller indices, Unit cell, Wigner-Seitz unit, reciprocal lattice, closed packed structure, (BCC,FCC, HCP, DC) coordination number & coordination geometry. Principle of powder diffraction method; Elementary idea about interpretation of power XRD Types of Crystal binding: Ionic, Covalent, Metalic, Vander walls bonding,

(Lectures – 9 + Tutorials - 3)

UNIT - II

Free electron theory: Free electron theory of metals. Hall Effect, Elementary ideas of quantum Hall effect, Thermal and transport properties. Thermal conductivity in metals. Vibration in solid, normal modes, phonons, normal and unklopb processes, Mobility of charge carriers and Seeback coefficient, Wiedmann Franz law. Electronics specific heat. Bloch functions. Nearly free electron approximation. Formation of energy bands. gaps at Brillouin zone boundaries. Effective mass and concept of holes. Fermi surface.

(Lectures -9 + Tutorials - 3)

UNIT – III

Super Conductivity: Survey of important experimental result; critical temperature, persistent current, Meissner effect; Basic idea of BCS theory, Type I and Type II superconductor super conducting Material and their application. High Tc super conductivity. (Lectures -9 + Tutorials - 3)

UNIT - IV

Dielectric properties of solids: Complex dielectric and dielectric losses, relaxation time and Debye equation for orientational polarizability; theory of electronic and ionic polarization, Ferroelectricity-diplole theory, classifications of ferroelectric material.

(Lectures – 9 + Tutorials - 3)

UNIT - V

Diamagnetic susceptibility. Quantum theory of paramagnetism. Transition metal ions and rare earth ions in solids. Crystal field effect and orbital quenching. Ferromagnetic and antiferromagnetic ordering. Curie-Weiss theory, Heisenberg theory, Curie and Neel temperatures.

Optical properties of solids: band to band absorption, excitions. Polarons, Colour centres. Luminescence. Photoconductivity. (Lectures -9 + Tutorials - 3)

Outcomes: The students will learn about various theory of band formation, properties of matter and superconductivity. They also get familiar with structural, electrical and thermal properties of matter.

Essential Readings:

- 1. Introduction to Condensed Matter Physics K.C. Barua (Alpha Science International Ltd.)
- 2. A Basic Course in Crystallography JAK. Tareen & TRN Kutly. (Universities Press, India Pvt.)
- 3. An Introduction to Crystallography, F.C. Phillips, Longman Higher Education.
- 4. Crystallography Applied to Solid State Physics A.R. Verma and O. N. Srivastava, New Age International limt., 2nd Ed. Reprint 2005.
- 5. Elements of Solid state Physics, M. Ali omor Peasson Education 3rd Indian reprient, 2002

(A CENTRAL UNIVERSITY)
DEPARTMENT OF PHYSICS

Suggested Readings:

- 1. Solid state Physics, C. Kittel, Wiley. 5th Edition.
- 2. Solid state Physics, A.J. Dekkar, Macmillan.
- 3. Elementary Solid state Physics: Principles and Applications, M. Ali Omar, Addison-Wesley.
- 4. Introduction to Solids, L.V. Azaroff, Tata Mc-Graw Hill.
- 5. Solid state Physics: An introduction to Principles of Materials Science, H. Ibach and H. Luth, Springer.
- 6. Solid state Physics, S.O. Pillai, New Age International.
- 7. Condensed matter Physics, M.P. Mardar, Wiley.
- 8. Physics of solids, C.A. Wert and R. M. Thomson, McGraw-Hill.
- 9. Fundamentals of Solid state Physics, J. R. Christmaan, Wiley.
- 10. Solid State Physics- Structure and Properties of materials, M.A. Wahab, Narosa Publishing House
- 11. Solid State Physics N.W. Ashcroft and N.D. Mermin, New York: Holt, Rinehart and Winston.
- 12. Solid State Physics, J.S. Blakemore, Cambridge University Press.
- 13. Solid State Theory, Mendel Sachs, McGraw-Hill.

- https://www.e-booksdirectory.com/listing.php?category=2
- http://www.motionmountain.net/?gclid=CjwKCAjwmq3kBRB_EiwAJkNDp5v8Yy6xK1s0Kma0VR0AWGlichRwFfCC0-vpZK1jrPoEOAnBq8fcqRoClLsQAvD_BwE
- https://www.sciencebooksonline.info/physics.html
- http://www.cambridgeindia.org/
- https://bookboon.com/en/physics-ebooks
- https://mcgrawhilleduction.pdn.ipublishcentral.com/book.
- https://ebookcental.proquest.com/lib/hsgu-

(A CENTRAL UNIVERSITY)
DEPARTMENT OF PHYSICS

M. Sc. (Physics): II Semester SESSION: 2020-2021 Core Course

		L	T	P	C
PHY CC 225	Laboratory Course - III (General -II)	0	0	2	2

Objective : Objective of the General Lab course is that students get aquented with General ESR spectrometer, B-H curve, Resistivity, dielectric constant etc.

Students have to perform of at least six practicals from the following list:

- 1. To study the g-factor by the ESR spectrometer.
- 2. To study the B-H curve of a given sample.
- 3. To study the effect of temperature on the resistivity of semiconductor.
- 4. To study the Fourier analysis of signals (Sine & Square).
- 5. To determine the dielectric constant of a given sample.
- 6. To determine the Curie temperature of Ferro-magnetic material.
- 7. Measurement of Hall coefficient in Metals.
- 8. To measure the bending loss in a multimode fiber.

Outcomes: Students after learning will get practical exposure of the basic instruments and its applications.

Link for e-Books for Physics:

- https://www.e-booksdirectory.com/listing.php?category=2
- http://www.motionmountain.net/?gclid=CjwKCAjwmq3kBRB_EiwAJkNDp5v8Yy6xK1s0Kma0VR0AWGlichRwFfCC0-vpZK1jrPoEOAnBq8fcqRoClLsQAvD BwE
- https://www.sciencebooksonline.info/physics.html
- http://www.cambridgeindia.org/
- https://bookboon.com/en/physics-ebooks

Note: Other practical of equivalent level can be added

(A CENTRAL UNIVERSITY)
DEPARTMENT OF PHYSICS

M. Sc. (Physics): II Semester

SESSION: 2020-2021 Core Course

		L	T	P	C
PHY CC 226	Laboratory Course – IV (Electronics Devices)	0	0	2	2

Objectives:

- 1. To know the concept of RC amplifier.
- 2. To know the concept of FETs, MOSFETs.
- 3. To know the concept of filters.
- 4. To know the concepts of Oscillator.

Students have to perform of at least eight practicals from the following list:

- 1. Study the frequency response of two-stage R-C coupled amplifier with and without negative feedback.
- 2. Study the characteristics of field effect transistor (FET).
- 3. Study the frequency response, input and output impedance of FET amplifier.
- 4. Study of characteristics of MOSFET.
- 5. Study the frequency response of MOSFET amplifier.
- 6. Study of low pass, high pass and band pass passive filters.
- 7. Study of low pass, high pass, band pass and notch active filters.
- 8. Study of Harley's & Colpitt's oscillators.
- 9. Study of multivibrators using timer (IC 555).
- 10. Study of phase shift oscillator using transistor.

Outcomes:

- 1. Construct the circuits to study the two stage RC coupled amplifier.
- 2. Construct the circuits for FETs and MOSETs to study characteristics and amplifier.
- 3. Construct the circuits for filters.
- 4. Construct the circuits for Oscillators.

Link for e-Books for Physics:

- https://www.e-booksdirectory.com/listing.php?category=2
- http://www.motionmountain.net/?gclid=CjwKCAjwmq3kBRB_EiwAJkNDp5v8Yy6xK1s0Kma0VR0AWGlichRwFfCC0-vpZK1jrPoEOAnBq8fcqRoClLsQAvD_BwE
- https://www.sciencebooksonline.info/physics.html
- http://www.cambridgeindia.org/
- https://bookboon.com/en/physics-ebooks

Note: Other practical of equivalent level can be added

(A CENTRAL UNIVERSITY)
DEPARTMENT OF PHYSICS

M. Sc. (Physics): II Semester

SESSION: 2020-2021 Skill Enhancement Course

PHY SE 221	Seminar	0	0	2	2	Ī
------------	---------	---	---	---	---	---

Objective: Objective of the seminar is to get student bold and present themselves in front of audience and keep their views.

This course makes a unique component of the curriculum. It is mandatory for every student to deliver a seminar of approximately 30 minutes duration on a topic as decided by the Departmental Seminar Committee.

Each and every student would get an opportunity to express his/her level of understanding of various concepts and this, apart from strengthening the subject knowledge, would help students in developing better communication skills and higher level of confidence.

The marks will be awarded by the Seminar Committee on the basis of performance in the seminar.

Outcomes: Students can present themselves.

(A CENTRAL UNIVERSITY) DEPARTMENT OF PHYSICS

M.Sc. II Semester **SESSION: 2020-2021 Other Elective Course**

Theory: 30 Lectures		C	redit	s: 02	,	
PHY OE 221	Energy and Environment	2	0	0	2	
		L	1	Р	C	

Objective: The aim of this course is not just to impart theoretical knowledge to the students but to provide them with exposure and hands-on learning wherever possible, to know about various new & renewable energy sources their conservation and energy storage.

UNIT I

Energy and Development: The principles underlying energy processes: basic ideas; energy efficiency, measurement of energy and its unit. Energy consumption, planning and Management: Global and Indian scenario. Energy resources: harnessing, utilization, advantage and limitations of conventional energy sources (Coal, Oil, natural gas and nuclear fission), Future energy options for sustainable development.

(Lectures - 6)

UNIT II

New and Renewable Sources of Energy: Solar energy and its conversion into various forms of energy, Wind Energy, hydro energy, Geothermal and Tidal Energy, Hydrogen energy and fuel cell: principle of working and applications. Nuclear fusion energy: basic principles and application. (Lectures – 6)

UNIT III

Energy Conservation: Introduction to energy conservation, need for energy conservation, energy conservation measures in industry, transport, households, buildings, agriculture, lighting. Energy conservation in Thermal Utilities, Energy conservation in Electrical Systems and Utilities, Waste Heat Recovery.

(Lectures - 6

UNIT IV

Energy Storage: Need and importance of energy storage in conventional and nonconventional energy systems, various forms of energy storage: Thermal, chemical, mechanical, electrical and nuclear energy storage; Energy storage devices and systems.

(Lectures - 6)

UNIT V

Environmental Impact of Energy Systems: Environmental degradation due to energy production and utilization, primary and secondary pollution; air, water, soil, thermal, nuclear radiation, radioactive waste and noise pollution; depletion of ozone layer, biological damage due to environmental degradation,; Pollution control: Mechanism, process and devices for pollution control. Global and Indian Concerns for global warming and Climate change.

(Lectures - 6)

Outcomes: Students will get awareness of various energy and environmental issues. Their advantages and disadvantages and their conservation and need for energy storage for futures.

Essential Readings:

- 1. Energy and Environment: Robert A. Ristinen, Jack P. Kraushaar: WILEY publications II edition 2005-06.
- 2. Renewable Energy: Physics, Engineering, Environmental Impacts, Economics & Planning: Sore, BEHT SORENSEH Academic Press, 4th Edition, 2010.
- 3. Non-conventional Energy Sources: G.D. Rai, Khanna Publishers: 4th Edition, New Delhi, 2009.
- 4. Energy Conservation and Management: Suresh K Soni, Tech India Publications, Satya Prakasan, II Ed. ,New Delhi 2010
- 5. Environmental Science: Earth as a living planet: D.B. Botkin and E. A. Keller, WILEY Pub. 6th Ed., 2009.

Suggested Readings:

- Non-conventional energy sources G.D Rai Khanna Publishers, New Delhi, 2011
- Solar energy M P Agarwal S Chand and Co. Ltd., 1983
- Solar energy Suhas P Sukhative Tata McGraw Hill Publishing Company Ltd., 1996
- Godfrey Boyle, "Renewable Energy, Power for a sustainable future", 2004, Oxford University Press, in association with The Open University.
- Dr. P Jayakumar, Solar Energy: Resource Assessment Handbook, 2009

(A CENTRAL UNIVERSITY)
DEPARTMENT OF PHYSICS

- https://www.e-booksdirectory.com/listing.php?category=2
- http://www.motionmountain.net/?gclid=CjwKCAjwmq3kBRB_EiwAJkNDp5v8Yy6xK1s0Kma0VR0AWGlichRwFfCC0-vpZK1jrPoEOAnBq8fcqRoClLsQAvD_BwE
- https://www.sciencebooksonline.info/physics.html
- http://www.cambridgeindia.org/
- https://bookboon.com/en/physics-ebooks

(A CENTRAL UNIVERSITY)
DEPARTMENT OF PHYSICS

M. Sc. (Physics): III Semester

SESSION: 2020-2021

	Core Course	L	T	P	C
PHY CC 321	Statistical Mechanics	3	1	0	4

Objective: The main purpose of this course is to acquire fundamental knowledge of classical and quantum statistical mechanics. Thermodynamics describe the macroscopic properties of many body system in terms of state variables. Statistical mechanics also describe the properties of many body system in terms of the microscopic properties of the constitutions particles of the system. So, main goal is to construct a bridge between thermodynamics and statistical mechanics by using mathematical methods and fundamental physics for individual particles.

UNIT I

Fundaments of statistical physics: Phase space, Liouville theorem and its consequence, specification of states of a system, statistical distribution function; Statistics of various Ensembles - Micro canonical, Canonical, grand canonical ensembles; Example of various ensemble – an electron in a magnetic field, a free particle in a Box, a linear harmonic oscillator; Basic postulates; Behaviour of the density of states; partition functions and their properties; calculation of thermodynamic quantities; the classical ideal gas; the entropy of mixing and Gibbs paradox; the correct enumeration of microstates; The Equipartition theorem; Maxwell velocity distribution.

(Lectures - 9 + Tutorials - 3)

UNIT II

Isolated system; System in contact with reservoir; Stability conditions for homogeneous substance; Phase transformation; First order and second order phase transition; Equilibrium conditions between phases; The Clausius-Clapeyron equation.

(Lectures – 9 + Tutorials - 3)

UNIT III

Classical and Quantum statistics; Identical particles and symmetry requirements; the classical and quantum distribution functions; Maxwell-Boltzmann statistics, Bose-Einstein statistics, Fermi-Dirac statistics; Degeneracy criterion.

(Lectures – 9 + Tutorials - 3)

UNIT IV

Bose systems: Thermodynamic behaviour of ideal Bose-gas; Thermodynamics of Black Body radiation; Bose-Einstein condensation; Super fluidity.

Fermi systems: Thermodynamics of ideal Fermi systems; Magnetic behaviour of an ideal Fermi gas; Pauli Paramagnetism; Landau diamagnetism; Degenerate Fermi systems - electron gas, Electron gas in metal- Thermionic emission and Photo-electric emission; Statistical equilibrium of White dwarf stars.

(Lectures – 9 + Tutorials - 3)

UNIT V

Systems of interacting particles; Harmonic lattice vibrations: Phonons; Einstein model and Debye model regarding the explanation of temperature dependent of specific-heat; Interaction between spins; Weiss molecular-field approximation regarding the explanation of ferromagnetism; Mean field theory of Ising model and its exact solution in one-dimension; Thermodynamic fluctuation; The Brownian motion; The Langevin theory; The Fokker-Planck equation; The fluctuation-dissipation theorem; The Onsager relation.

(Lectures – 9 + Tutorials - 3)

(A CENTRAL UNIVERSITY)
DEPARTMENT OF PHYSICS

Outcome: The capability of solving problem will be grown among students through their course as means of imparting physical understanding and intuition. General principles of statistical mechanics actually work for simple as well as complex system. Students will get opportunity to explore relationships between macroscopic properties of large systems and microscopic behavior of the constituent particles. Students will learn relationship between equilibrium distributions and kinetic processes which leads to equilibrium.

Essential Readings:

- 1. Statistical Mechanics- K. Huang: John Wiley & Sons, 2nd Ed., New York, 1987.
- 2. Statistical Physics (Vol. 5), L. Landau & I. LifshitzPergamon Press, 3rd Ed., 1980.
- 3. Fundamentals of statistical and thermal physics, F. Reif: McGraw-Hill Book Company New York, 1965.
- 4. Statistical Mechanics, R. K. Pathria: Butterworth-Heinemann 1996.

Suggested Readings:

- 5. Thermodynamics and Statistical Mechanics, A. Sommerfeld: Academic press, New York, 1956.
- 6. Lectures on Phase transitions and the Renormalization Group, Frontiers in PhysicN. Goldenfeld: s, Addison Wesley, Reading Massachusetts, 1994
- 7. Principles of Condensed Matter Physics, P. Chaikin and T. Lubensky, Cambridge University Press, 1995

- https://www.e-booksdirectory.com/listing.php?category=2
- http://www.motionmountain.net/?gclid=CjwKCAjwmq3kBRB_EiwAJkNDp5v8Yy6xK1s0Kma0VR0AWGlichRwFfCC0-vpZK1jrPoEOAnBq8fcqRoClLsQAvD_BwE
- https://www.sciencebooksonline.info/physics.html
- http://www.cambridgeindia.org/
- https://bookboon.com/en/physics-ebooks

(A CENTRAL UNIVERSITY)
DEPARTMENT OF PHYSICS

M.Sc. (Physics): III Semester SESSION: 2020-2021

PHY CC 322	Computational Methods and Programming	3	1	0	4

Objective:

- 1. To develop understanding of issues and solving them use of programming language like 'c'.
- 2. To introduced various numerical methods and solve the problems based on these methods using 'c' programming.

UNIT - I

Introduction & features of C- Structure of C program, Variables, Expressions, Identifiers, Keywords, Data Types, Constants, Operator and expression Operator: Arithmetic, Logical and Relational.

Control Flow Statements - If statement, If.....Else statement, Nesting of If....Else Statement, elseif ladder, The ?: operator, goto statement, Switch statement, Compound statement, Loop controls, for, while, do-while loops, break, continue. (Lectures – 9 + Tutorials - 3)

UNIT - II

Solution of Algebraic and Transcendental Equations: The Bisection method, Iteration methods, Newton-Raphson method.

Solution of Systems of Nonlinear Equations: The method of iteration, Newton-Raphson method. (Lectures – 9 + Tutorials - 3)

UNIT - III

Curve Fitting and Approximation: Least squares curve fitting, fitting a straight line and nonlinear curve fitting. Weighted least squire approximation: Linear weighted least squire approximation, Nonlinear weighted least squire approximation. Method of least squires for continuous functions

(Lectures - 9 + Tutorials - 3)

LTPC

UNIT - IV

Numerical Differentiation: Introduction, errors in numerical differentiation, the cubic spline method.

Numerical Integration: Trapezoidal rule, Simpson's 1/3 rule, Simpson's 3/8 rule, Gaussian integration.

(Lectures -9 + Tutorials - 3)

UNIT - V

Matrices and Linear Systems of Equations: Basic definitions, matrix operations, transpose and inverse of a matrix. Solution of linear systems, direct methods: matrix inversion method, Gaussian elimination method. Solution of linear systems: Iterative method.

(Lectures - 9 + Tutorials - 3)

Outcomes:

- 1. The students will be able to understand the 'c' programming language.
- 2. The students will be able to solve numerical /physics problem with the help of 'c' programmes.

Essential Readings:

- 1. Introduction to numerical analysis: S.S. Sastry, III Ed. PHI, 2003.
- 2. Numerical Analysis- Goel Mittal, Pragati Prakashan 16th Ed., 2001.

Suggested Readings:

- 3. Numerical Analysis: E. Balaguruswamy, TMH Pub., 21st Reprint 2007.
- 4. Computer Oriented Numerical Methods V. Rajaramn, IIIEd. PHI.2004
- 5. Numerical Methods for Engineers, Stevan C. Chapra, Mc. Graw Hill Pub., 5th Ed., 2006.

(A CENTRAL UNIVERSITY)
DEPARTMENT OF PHYSICS

- https://www.e-booksdirectory.com/listing.php?category=2
- http://www.motionmountain.net/?gclid=CjwKCAjwmq3kBRB_EiwAJkNDp5v8Yy6xK1s0Kma0VR0AWGlichRwFfCC0-vpZK1jrPoEOAnBq8fcqRoClLsQAvD_BwE
- https://www.sciencebooksonline.info/physics.html
- http://www.cambridgeindia.org/
- https://bookboon.com/en/physics-ebooks

(A CENTRAL UNIVERSITY)
DEPARTMENT OF PHYSICS

M. Sc. (Physics): III Semester SESSION: 2020-2021

	Core Course	L	T	P	C
PHY CC 323	Laboratory Course (Computer Programming)	0	0	2	2

Objective: The course is designed for -

- To develop understanding of issues and solving them use of programming language like 'c'.
- To introduced various numerical methods and solve the problems based on these methods using 'c' programming.

 Students have to perform of at least six practicals from the following list:
 - 1. Numerical Integration using Simpson 1/3.
 - 2. Numerical Integration using Gauss quadrature methods for one and two-dimensional integrals.
 - 3. Least Square fitting (Linear).
 - 4. Solution of second-order differential equation using Runge-Kutta method.
 - 5. To find roots of an equation of degree 1, 2 and 3 by using Bisection method.
 - 6. Solution of Simultaneous Linear Algebraic equations by Gauss-Jordan elimination method.
 - 7. Interpretation and Extrapolation by using Lagrangian method.
 - 8. Finding eigenvalues and eigenvectors of square matrices.

Outcomes:

- 1. The students will be able to understand the 'c' programming language.
- 2. The students will be able to solve numerical /physics problem with the help of 'c' programmes.

Link for e-Books for Physics:

- https://www.e-booksdirectory.com/listing.php?category=2
- http://www.motionmountain.net/?gclid=CjwKCAjwmq3kBRB_EiwAJkNDp5v8Yy6xK1s0Kma0VR0AWGlichRwFfCC0-vpZK1jrPoEOAnBq8fcqRoClLsQAvD_BwE
- https://www.sciencebooksonline.info/physics.html
- http://www.cambridgeindia.org/
- https://bookboon.com/en/physics-ebooks

Note: Other practical of equivalent level can be added.

(A CENTRAL UNIVERSITY)
DEPARTMENT OF PHYSICS

M.Sc. (Physics): III Semester SESSION: 2020-2021

Core Course		
Instrumentation Skill Development	0	

Objectives:

- 1. A workshop is a way for someone to pass on to ideas and methods.
- 2. Practices using the tools and information necessary to develop curriculum and required contents.
- 3. Design and use tools.

PHY CC 324

(A) Objective is to learn the various process of

Workshop Practice: (any two)

- 1. Cutting and filling of iron rod.
- 2. Operation of Shaping machine
- 3. Operation of Lathe machine.
- 4. Welding practice.

(B) How to glass blowing used for Research

Glassblowing Practice: (any two)

- 1. Making of Capillary tube.
- 2. Making of Glass joint Band & T
- 3. Making of test tube.
- 4. Cutting and Grinding.

(C) To equated with Electronic Instrumentation practicals

Electronics Instrumentation : (any three)

- 1. Measurement of resistance in series and parallel combination by colour code and multi-meter.
- 2. Testing of components and pin identification of capacitor diode and transistors by multi-meter.
- 3. Familiar with CRO to measure frequency and amplitude of AF signal.
- 4. Making of PCB.
- 5. Design and fabrication of simple circuitry.
- 6. Software based electronic circuit design and simulation.

Note: More skills may be added during the progression of the course

OUTCOME OF COURSE: Get expertise with electronics Instrumentation experiments

- Get expertise in cutting, fitting, shaping machine ,lathe machine, capillary tube, T cutting and grinding
- To get master in measuring and testing to components & tools

Outcomes:

- Design various objects using tool of workshop.
- Learn the various machined used in workshop.

Link for e-Books for Physics:

- https://www.e-booksdirectory.com/listing.php?category=2
- http://www.motionmountain.net/?gclid=CjwKCAjwmq3kBRB_EiwAJkNDp5v8Yy6xK1s0Kma0VR0AWGlichRwFfCC0-vpZK1jrPoEOAnBq8fcqRoClLsQAvD_BwE
- https://www.sciencebooksonline.info/physics.html

Note: Other practical of equivalent level can be added.

(A CENTRAL UNIVERSITY)
DEPARTMENT OF PHYSICS

M.Sc. (Physics): III Semester SESSION: 2020-2021

Skill Enhancement Course

PHY SE 321	Seminar	0	0	2	2
------------	---------	---	---	---	---

Objective: Objective of the seminar is to get student bold and present themselves in front of audience and keep their views.

This course makes a unique component of the curriculum. It is mandatory for every student to deliver a seminar of approximately 30 minutes duration in the field of chosen electives and on a topic as decided by the Departmental Seminar Committee. Each and every student would get an opportunity to express his/her level of understanding of various concepts and this, apart from strengthening the subject knowledge, would help students in developing better communication skills and higher level of confidence.

The marks will be awarded by the Seminar Committee on the basis of performance in the seminar and the seminar report submitted by the student.

Outcomes: Students can present themselves.

(A CENTRAL UNIVERSITY)
DEPARTMENT OF PHYSICS

M.Sc. (Physics): III Semester SESSION: 2020-2021 Elective Course

		L	\mathbf{T}	P	\mathbf{C}
PHY EC 321	Microprocessors and Microcontrollers	3	0	1	4

Objectives: The objective of this course is to become familier with the instruction set of an intel microprocessor. Assembly language programming will be studied as well as the design. Understand the architeature of 8085, 8086 32 bit and microcontrollers.

UNIT-I

The 8085 pin configuration and functional Block Diagram, Interrupt, Register, Addressing mode, instruction set, instruction set and their classification, Addressing of I/o devices, DMA, Input/output port.

(Lectures – 9 + Tutorials - 3)

UNIT - II

The 8086 Introduction, 8086 architecture and pin configuration 8086 addressing modes, 8086 instruction sets, 8089 input/ output, processor. (Lectures – 9 + Tutorials - 3)

UNIT - III

The microprocessor and its Architecture internal microprocessor architecture, Real mode memory addressing, Introduction to protected mode memory addressing, memory paging.

(Lectures - 9 + Tutorials - 3)

UNIT - IV

Memory Interface:

Memory devices, Address Decoding, 8088 and 80188 memory interface, 8086, 80186, 80286, 80386 (SX) memory interface, 80386 (DX) and 80486 memory interface.

(Lectures - 9 + Tutorials - 3)

UNIT - V

Microcontroller, Types of microcontroller, Embedded and External memory microcontrollers CSIC and RISC Architecture microcontrollers, Harvard and Princeton memory Architecture microcontroller (only Hardware).

(Lectures - 9 + Tutorials - 3)

Outcomes: Design and implement program on 8085, 8086. Design and implement program on microcontroller.

Essential Readings:

- 1. The Intel Microprocessor Barry B. Brey Pearson Education.6th Edition, 2003.
- 2. Microprocessor Theory and Application M. Rafiquzzman PHI, Revised Edition 1999.

Suggested Readings:

- 3. Introduction to Microprocessor Gaonkar (Prentice Hall)
- 4. Microcontroller Raj Kamal Pearson Education, 1st Ed. 2005
- 5. Introduction to Microprocessor- Aditya P. Mathur, TMH, 3rd Edition.

- https://www.e-booksdirectory.com/listing.php?category=2
- http://www.motionmountain.net/?gclid=CjwKCAjwmq3kBRB_EiwAJkNDp5v8Yy6xK1s0Kma0VR0AWGlichRwFfCC0-vpZK1jrPoEOAnBq8fcqRoClLsQAvD_BwE
- https://www.sciencebooksonline.info/physics.html
- http://www.cambridgeindia.org/
- https://bookboon.com/en/physics-ebooks

(A CENTRAL UNIVERSITY)
DEPARTMENT OF PHYSICS

M. Sc. (Physics): III Semester: SESSION: 2020-2021 Elective Course

		L	T	P	C
PHY EC 322	Materials Science	3	1	0	4

Objectives: To get aware about the all types of materials. Classification of materials and to learn various synthesis and characterization technique. Disorder/imperfect materials and their types. Idea about thermal studies and phase diagram studies, solidification and various application to devices applications of materials.

UNIT – I

Classification of Materials: Crystalline and amorphous material, semiconductor, metals and alloys; glassy, composites and ceramic materials, polymers, gels & quasi crystals, Structure of Materials: Important crystal structure. NaCl (Rock salt) Wurtzite (ZnS), Fluorite, (CaF₂) Rutile (TiO₂). (Lectures – 9 + Tutorials - 3)

UNIT - II

Preparation of Materials by different techniques: Mechanisum of crystal growth form melt, growth from crucibles, melt spinning and quenching method,

Physical Method for characterization Solids: Bragg's equation, Spectrum of x-ray, powder XRD, crystallite size. Scanning electron microscopy (SEM) Transmission electron microscopy (TEM) Differential scanning calorimetry (DSC), Thermogravimetric analysis (TGA). (Lectures – 9 + Tutorials - 3)

IINIT – III

Disorder in Solids: Solid solution –Hume-Rothery rules; substitutional & interstitial solid solution, Point defect, vacancy, interstitial Frenkel & Schottky defects. Line defect edge and screw dislocation, Burger's vector, planer defects (grain boundaries, high and low angle tilt boundaries twin boundaries). short range order, medium range order, long range order, and network modifier/former. (**Lectures** – 9 + **Tutorials** – 3)

Phase diagram - Complete Solid solution, Gibb's phase rule, Binary phase diagram, eutectic, eutectiod, diagram, Example of binary phase diagram.

Phase transformation: Solidifications and crystallization, glass transition, Volume-Temperature diagram.

(Lectures - 9 + Tutorials - 3)

UNIT - V

Devices : Application to material Devices; Solid state electrochemical devices, Solid State Battery, Fuel cells, Solar cells. (**Lectures – 9 + Tutorials - 3**)

Outcomes the course:

- 1. Student will get aware of all types of materials, crystalline, glassy, polymers etc.
- 2. Learn various synthesis process and characterization look as XRD, SEM and TEM.
- 3. To have a knowledge about various types of point defects.
- 4. Learns about phase diagram and various solidification projects.
- 5. Finally devices applicability solid state battery fuel cells, solar cell etc.

Essential Readings:

- 1. Introduction to Condensed Matter Physics K.C. Barua (Alpha Science International Ltd.) 2006
- 2. A Basic Course in Crystallography J.A.K. Tareen & Kutly. Hydrabad (Universities Press, India Pvt.)
- 3. Material Science and Engineering A first course V. Raghavan (Prentice Hall, India Pvt.)
- 4. Introduction of Material Science for Engineers James F. Shackelford Macmillan Pub.2006
- 5. Crystallography Applied to Solid State Physics A.R. Verma and O. N. Srivastava (New Age International Pub.)2005
- 6. Physical Properties of Materials MC Lovell, A.J. Avery. M.W. Vernon (ELBS) Van Nostrad Reinhold UK. Co. Ltd.
- 7. Principles of Electronics Ceramics -L.L. Hench, and J.K. West. (John-Wiley & Sons) Ist. Editions.
- 8. Introduction to Ceramics WD Kingery, HK Bowen, DR Uhlmann (University Press, Cambridge) IInd Editions.

Suggested Readings:

- 9. Solid State Physics N.W. Ashcroft and N.D. Mermin, New York : Holt, Rinehart and Winston.
- 10. Solid State Physics Solid State Devices and Electronics CM Kachhava. (New Age International Pub.)
- 11. Solid state chemistry : An introduction Leslay E smart & Elaine A Moore (Taylor & Francis)
- 12. Thin film by: K.L. Chopra.(Mc Graw Hill)
- 13. Material Science and Engineering An Introduction W.D. Callister, David G. Rethwisch, John Wiley and Sons. 8th
- 14. Elements of Material Science and Enginerring Lawrence H. Van Vlack ,Peasson Education 6th Ed.
- 15. Physical Metallurgy Principle, Robirt E Reed Hill, D Van Nostrand Company, 2nd Ed.

(A CENTRAL UNIVERSITY)
DEPARTMENT OF PHYSICS

- https://www.e-booksdirectory.com/listing.php?category=2
- http://www.motionmountain.net/?gclid=CjwKCAjwmq3kBRB_EiwAJkNDp5v8Yy6xK1s0Kma0VR0AWGlichRwFfCC0-vpZK1jrPoEOAnBq8fcqRoClLsQAvD_BwE
- https://www.sciencebooksonline.info/physics.html
- http://www.cambridgeindia.org/
- https://bookboon.com/en/physics-ebooks

(A CENTRAL UNIVERSITY)
DEPARTMENT OF PHYSICS

M.Sc. (Physics): III Semester SESSION: 2020-2021 Elective Course

		L	T	P	<u>C</u>
PHY EC 323	Laser Physics and Optical Fiber	3	1	0	4

Objective: The objective of this course is to introduce learns and its application in various fields. The objective of this cause in to student the student to the fundamental basics and undulating of fiber optical. The aim of the course in to pruned knowledge of the lasses as fundamental tool of come.

UNIT-I:

Basic Principles of Laser; Two, three and four level laser system, Rate equations for three and four level system, threshold pump power, Relative merits and de-merits of three and four level system.

(Lectures - 9 + Tutorials - 3)

UNIT-II:

Optical resonators, Stability of resonators, Characteristics of Gaussian beam, Transverse and Longitudinal modes, mode selection, losses in a resonator, mirror mounts, Q-switching and Mode locking

(Lectures – 9 + Tutorials - 3)

UNIT-III: Various Laser Systems

Gas lasers- CO₂ laser and N₂ laser

Ionic gas laser – Ar⁺ laser

Solid State Laser: Nd:YAG laser,Nd:Glass laser,

Excimer Laser, Chemical Laser: HF laser, Free electron laser; semiconductor diode laser.

(Lectures -9 + Tutorials - 3)

UNIT-IV:

Nonlinear optics second harmonic generation (SHG), three waves mixing: Up conversion and down conversion, self beam focusing, Kerr effect. Holography, Medical and Industrial applications.

(Lectures - 9 + Tutorials - 3)

Unit V:

Optical fiber: Principle, classification and features, Numerical aperture, attenuation and dispersion and their types.

(Lectures -9 + Tutorials - 3)

Outcome: Purpose – to make student optical fiber trine mission link, diagram, advantages of optical fiber.

Essential Readings:

- 1. Laser Theory and Applications: K. Thyagarajan and A.K. Ghatak, Macmillan India Limited
- 2. Principles of Lasers: O. Svelto, Springer 4 Edition.
- 3. Laser Spectroscopy and Instrumentation: W. Demtroder, Springer. 2013
- 4. Laser Material Processing: William M. Steen, Mazumdar, Jyotirmay, Springer. 2010
- 5. Modern Spectroscopy, J. M. Hollas, Willey,
- 6. Fundamentals of Molecular Spectroscopy, C. N. Banwell and E.M. Mc Cash, Tata Mc Graw Hill. 1994
- 7. Advances in Laser spectroscopy: Edited by F.T.Arecchi, Springer. 1983

Suggested Readings:

- 8. Laser Applications: Monte Ross, Academic Tron
- 9. Lasers By Milloni & Eberly, Willey Publication.
- 10. Laser Fundamentals William T Silfvast, Cambridge Univ. Press.
- 11. Laser and Non liner Optics B.B. Loud, New Age International (Pvt. Ltd.)
- 12. Optical Fiber and Laser Dr. Anuradha De, New Age International (Pvt. Ltd.)
- 13. Optical Fiber Communications John M. Senior, Prentice- Hall of India Pvt. Ltd

(A CENTRAL UNIVERSITY)
DEPARTMENT OF PHYSICS

Link for e-Books for Physics:

- https://www.e-booksdirectory.com/listing.php?category=2
- http://www.motionmountain.net/?gclid=CjwKCAjwmq3kBRB_EiwAJkNDp5v8Yy6xK1s0Kma0VR0AWGlichRwFfCC0-vpZK1jrPoEOAnBq8fcqRoClLsQAvD_BwE
- https://www.sciencebooksonline.info/physics.html
- http://www.cambridgeindia.org/
- https://bookboon.com/en/physics-ebooks

.

(A CENTRAL UNIVERSITY)
DEPARTMENT OF PHYSICS

M.Sc. (Physics): III Semester SESSION: 2020-2021 Elective Course

		L	T	P	C
PHY EC 323	Laser Physics and Optical Fiber	3	1	0	4

Objective: The objective of this course is to introduce learns and its application in various fields.

UNIT-I:

Basic Principles of Laser; Two, three and four level laser system, Rate equations for three and four level system, threshold pump power, Relative merits and de-merits of three and four level system.

(Lectures -9 + Tutorials - 3)

UNIT-II:

Optical resonators, Stability of resonators, Characteristics of Gaussian beam, Transverse and Longitudinal modes, mode selection, losses in a resonator, mirror mounts, Q-switching and Mode locking (Lectures – 9 + Tutorials - 3)

UNIT-III: Various Laser Systems

Gas lasers- CO₂ laser and N₂ laser

Ionic gas laser – Ar⁺ laser

Solid State Laser: Nd:YAG laser,Nd:Glass laser,

Excimer Laser, Chemical Laser: HF laser, Free electron laser; semiconductor diode laser.

(Lectures -9 + Tutorials - 3)

UNIT-IV:

Nonlinear optics second harmonic generation (SHG), three waves mixing: Up conversion and down conversion, self beam focusing, Kerr effect. Holography, Medical and Industrial applications.

(Lectures - 9 + Tutorials - 3)

Unit V:

Optical fiber: Principle, classification and features, Numerical aperture, attenuation and dispersion and their types.

(Lectures - 9 + Tutorials - 3)

Outcome: From this course students learn the principle of leaser, Laser Physics, various types of laser systems and their applications in various fields.

Essential Readings:

- 1. Laser Theory and Applications: K. Thyagarajan and A.K. Ghatak, Macmillan India Limited
- 2. Principles of Lasers: O. Svelto, Springer 4 Edition.
- 3. Laser Spectroscopy and Instrumentation : W. Demtroder, Springer.2013
- 4. Laser Material Processing: William M. Steen, Mazumdar, Jyotirmay, Springer. 2010
- 5. Modern Spectroscopy, J. M. Hollas, Willey,
- 6. Fundamentals of Molecular Spectroscopy, C. N. Banwell and E.M. Mc Cash, Tata Mc Graw Hill. 1994
- 7. Advances in Laser spectroscopy: Edited by F.T.Arecchi, Springer.1983

(A CENTRAL UNIVERSITY)
DEPARTMENT OF PHYSICS

Suggested Readings:

- 8. Laser Applications: Monte Ross, Academic Tron
- 9. Lasers By Milloni & Eberly, Willey Publication.
- 10. Laser Fundamentals William T Silfvast, Cambridge Univ. Press.
- 11. Laser and Non liner Optics B.B. Loud, New Age International (Pvt. Ltd.)
- 12. Optical Fiber and Laser Dr. Anuradha De, New Age International (Pvt. Ltd.)
- 13. Optical Fiber Communications John M. Senior, Prentice- Hall of India Pvt. Ltd.

- https://www.e-booksdirectory.com/listing.php?category=2
- http://www.motionmountain.net/?gclid=CjwKCAjwmq3kBRB_EiwAJkNDp5v8Yy6xK1s0Kma0VR0AWGlichRwFfCC0-vpZK1jrPoEOAnBq8fcqRoClLsQAvD_BwE
- https://www.sciencebooksonline.info/physics.html
- http://www.cambridgeindia.org/
- https://bookboon.com/en/physics-ebooks

(A CENTRAL UNIVERSITY)
DEPARTMENT OF PHYSICS

M.Sc. III Semester: Physics SESSION: 2020-2021

Other Elective Course

		L	<u>T</u>	<u> </u>	<u>C</u>
PHY OE 321	Nanomaterials and Nanotechnology	2	0	0	2

Objective: Objective of the open elective paper is to get basic knowledge about nano materials and its technology.

UNIT - I:

Introduction: Introduction of nano, History of nano- materials (Michael faraday and divided metals, story of Damascus sword, Feynman's Lecture). How nanoworld different from world around us? Matter Waves, Heisenberg's uncertainty principle, Electron confinement.

(Lectures - 6)

UNIT - II

Carbon Nanomaterials: Special Carbons: Carbon nanotube, fullernece, Type of CNT: SWNT(single wall nano tube), Multi wall nano tubles. 2D nano material, Graphite and Graphene,

(Lectures - 6)

UNIT - III

Synthesis of nano materials: Top-down or bottom up approach of nano-materials,

Physical Methods; PLD, Sputtering, Thermal evaporation

Chemical Methods – CVD, Sol-gel, Hydrothermal.

Biological Methods – Green Synthesis, self assembly.

(Lectures -6)

UNIT - IV

Properties of Nano materials: magnetic, optical, thermal, mechanical, electrical for nanomaterials.

(Lectures – 6)

UNIT - V

Applications of Nanomaterials: Solar-cell, thermoelectric, cosmetics, Light emitting diode (LED), Medicine, Bio-marker, Sensors.

(Lectures - 6)

Outcomes: Students after learning will get aware of basic principles, special carbons, various synthesis methods and its properties.

Essential Readings:

- 1. Introduction to Nano Science and Nano Technology K.K. Chattopadhyay & AN Banerjee PHI Pvt. Ltd.,2009.
- 2. Nano technology: Principles and practices Sulabha K. Kulkarni, Capital Publisher Co., 2015.
- 3. Introduction to nano technology: Charles P. Poole, Jr. Frank J. Owen, Wiley, Interscience Pub., May, 2003.
- 4. Nanostructures & Nanomaterials Synthesis Properties & Applications. Guozhong Cao, Imperials College Press London. 2004

Suggested Readings:

- 1. Nano: The Essentials. T. Pradeep, McGraw Hill Education. 20/01/2007
- 2. Handbook of Nanostructures: Materials and nanotechnology, H.S. Nalwa Vol 1-5, Academic Press, Bostan., I Ed.,Oct., 1999.
- 3. Nano world An introduction to nanoscience & Technology CNR Raw,

- https://www.e-booksdirectory.com/listing.php?category=2
- http://www.motionmountain.net/?gclid=CjwKCAjwmq3kBRB_EiwAJkNDp5v8Yy6xK1s0Kma0VR0AWGlichRwFfCC0-vpZK1jrPoEOAnBq8fcqRoClLsQAvD_BwE
- https://www.sciencebooksonline.info/physics.html
- http://www.cambridgeindia.org/
- https://bookboon.com/en/physics-ebooks

(A CENTRAL UNIVERSITY)
DEPARTMENT OF PHYSICS

M.Sc. (Physics): IV Semester SESSION: 2020-2021 Core Course

		L	T	P	C
PHY CC 421	Advanced Quantum Mechanics	3	1	0	4

Course Objective: The course is targeted to fulfill the additional requirement of students in dealing with time dependent quantum systems and their solutions. The methods of advantage of scattering theory in dealing with some special problems are also included. The relativistic motion of various types of spin particles under various perturbations are to be dealt. The fundamentals of method of second quantization's to collection of fermions/bosons will be discussed.

UNIT – I

Time Dependent Perturbation Theory: Introduction, method of variation of constants, Constant perturbation, Harmonic perturbation, Transition probability, Transition to continuum of states, Fermi's Golden Rule, Adiabatic and sudden approximation. (**Lectures – 9 + Tutorials - 3**)

UNIT – II

Semi Classical Theory of Radiation: Introduction, electric dipole approximation, transition probability, Einstein's transition probability, selection rules for electric dipole transitions and forbidden transitions. (**Lectures** -9 + Tutorials - 3)

UNIT - III

Theory of Scattering: Introduction, Stationary collision theory, scattering cross-section, scattering amplitude, Method of partial wave analysis of scattering theory, Applications: scattering from spherically symmetric potential, scattering from a perfectly rigid/hard sphere.

Integral equation, the method of Born approximation, Validity of Born approximation, Application: scattering from screened Coulomb potential. (Lectures -9 + Tutorials -3)

UNIT - IV

Relativistic Quantum Mechanics: Introduction, Klein-Gordon equation, Interpretation of Klein-Gordon equation. K-G equation in electromagnetic field, particle in a Coulomb field.

Dirac's equation for free particle, Dirac's matrices, probability density, plane wave solution, negative energy states, spin of the Dirac particle, magnetic moment and spin-orbit interaction energy of the electron. (Lectures -9 + Tutorials - 3)

UNIT – V

Quantisation of the fields: Introduction, Classical Field theory, The Lagrangian and Hamiltonian formulations, quantum equation for the field, Method of second quantization for system of Bosons and system of Fermions, Creation, annihilation and number operators, occupation number representation. (**Lectures – 9 + Tutorials - 3**)

Outcomes: After undergoing this course, students will have deeper knowledge about the foundation of new quantum mechanics and will have batters kills to solve various types of quantum mechanical problems by applying various types of methods learnt.

Essential Readings:

- 1. Quantum Mechanics: Concepts and Applications, N. Zettily, Wiley., II edition,
- 2. Quantum Mechanics, G. Aruldhas, PHI.
- 3. Quantum Physics, S. Gasiorowicz, Wiley.
- 4. Quantum mechanics: Theory and Applications, A.K. Ghatak and S. Lokanathan, Kluwer Academic Publishers.
- 5. Advanced Quantum Mechanics, J.J.Sakurai, Pearson Addison-Wesley.
- 6. Quantum Mechanics, Vol-2, Claude Cohen-Tannoudji, Wiley.
- 7. Scattering Theory: The Quantum Theory of Non-relativistic Collisions, J.R. Taylor, Dover.
- 8. Scattering Theory of Waves and Particles, R.G. Newton, Dover.

Suggested Readings:

- 9. Relativistic Quantum Mechanics, J.D. Bjorken and S.D. Drell, Mcgraw-Hill College.
- 10. Student friendly Quntum field theory, R.D. Klauber, Sandtrove Press.
- 11. Quntum field theory, C. Itzykson and J.B. Zuber, Dover.

(A CENTRAL UNIVERSITY)
DEPARTMENT OF PHYSICS

- 12. Quntum field theory, F. Mandl and G. Shaw, Wiley.
- 13. Quntum field theory, David Tong, Create Space Independent Publishing Platform.
- 14. An Introduction to Quntum field theory, M. Peskin and D. Schroeder, West view Press Inc.
- 15. An introduction to Quntum theory of fields, S. Weinberg, Cambridge University Press.

- https://www.e-booksdirectory.com/listing.php?category=2
- http://www.motionmountain.net/?gclid=CjwKCAjwmq3kBRB_EiwAJkNDp5v8Yy6xK1s0Kma0VR0AWGlichRwFfCC0-vpZK1jrPoEOAnBq8fcqRoClLsQAvD_BwE
- https://www.sciencebooksonline.info/physics.html
- http://www.cambridgeindia.org/
- https://bookboon.com/en/physics-ebooks
- https://ebookcentral.proquest.com/lib/hsgu-

(A CENTRAL UNIVERSITY)
DEPARTMENT OF PHYSICS

M.Sc. (Physics): IV Semester SESSION: 2020-2021

	Core Course	L	T	P	C	
PHY CC 422	Nuclear and Particle Physics	3	1	0	4	

Objective.

- 1. This is a basic course in physics which deals with the phenomena taking place in the nuclear domain. Student will be given an insight into the dimension of a nuclear.
- 2. The aim is to tell them about the stability of nucleus and various other properties.
- 3. The students will learn about various type of radiation and their interaction with matter.
- 4. The course is such designed to teach students about various types of nuclear reactions and their energies.
- 5. Students will learn the methods to find the mass and charge of any nucleus by using some instruments.

UNIT I

Structure of nuclei: Basic Properties of Nuclei: Mass, Radii, Charge, Angular Momentum, Spin, Magnetic Moment (μ), Stability and Binding Energy. Nuclear size determination from electron scattering; nuclear form factor, Rutherford scattering. (**Lectures – 9 + Tutorials - 3**)

UNIT II

Radioactivity: Law of Radioactive Decay. Half-life, Theory of Successive Radioactive Transformations. Radioactive Series, Binding Energy, Mass Formula, α -decay: Range of α -particles, Geiger-Nuttal law and α -particle Spectra. Gamow Theory of Alpha Decay. β -decay: Energy Spectra and Neutrino Hypothesis. Fermi theory of beta decay, neutrino detection method, parity violation in beta decay, properties of neutrino, γ -decay: Origin of γ -rays, Nuclear Isomerism and Internal Conversion, measurements of gamma rays energies, selection rules for gamma emission, total decay rate, Angular momentum and parity selection rules.

(Lectures - 9 + Tutorials - 3)

UNIT III

Nuclear Models : Liquid Drop Model. Fermi Gas model, shell model, Experimental evidence of shell model. Spin orbit coupling in shell model. Magic numbers. Applications of liquid drop model. Mass parabola. Beta stability. Angular momentum and parity determination using shell model for nuclear ground state. Collective nuclear model.

Nuclear Reactions : Types of Reactions and Conservation Laws. Concept of Compound and Direct Reaction. Compound Nucleus. Scattering Cross-section. Reaction Rate. Q-value of Reaction. Fission and Fusion. (Lectures – 9 + Tutorials - 3)

UNIT IV

Accelerators : Van de Graaff Generator, Linear Accelerator, Cyclotron, Betatron, and Light and Heavy Ion Synchro-Cyclotron. Idea of Large Hadron Collider

Detectors of Nuclear Radiations: Interaction of Energetic particles with matter. Ionization chamber. GM Counter. Cloud Chambers. Wilson Cloud Chamber. Bubble Chamber. Scintillatipn Detectors. Semiconductor Detectors (Qualitative Discussion Only). An Idea about Detectors used in Large Hadron Collider.

(Lectures – 9 + Tutorials - 3)

UNIT V

Introduction to particle physics. Classification and fundamental interactions of elementary particles, conservations laws, Elementary idea about CP invariance. Properties of elementary particles. Quark model. Gell-mann Okubo mass formula for octal and decuplet hadrons, symmetry schemes of elementary particles, SU(2) and SU(3) symmetry. (Lectures – 9 + Tutorials - 3)

(A CENTRAL UNIVERSITY)
DEPARTMENT OF PHYSICS

Outcome:

- 1. After taking this course, students are able to determine the charge, mass of any nuclear by using various spectrograph.
- 2. They are able to understand the size of nucleus and all its properties.
- 3. This course has led the students to understand interaction of various types of radiation with matter which they observe in their daily life. Its easy of them now to relate the theory to practical.

Essential Readings:

- 1. Concepts of Modern Physics by Arthur Beiser, McGraw-Hill Book Company, 1987
- 2. Concepts of nuclear physics by Bernard L.Cohen.New Delhi: Tata Mcgraw Hill, 1998.

Suggested Readings:

- 3. Introduction to the physics of nuclei and particles by R.A. Dunlap.Singapore: Thomson Asia, 2004.
- 4. Nuclear physics by Irving Kaplan. Oxford & IBH, 1962.
- 5. Introductory nuclear physics by Kenneth S. Krane. John Wiley & Sons, 1988.

- https://www.e-booksdirectory.com/listing.php?category=2
- http://www.motionmountain.net/?gclid=CjwKCAjwmq3kBRB_EiwAJkNDp5v8Yy6xK1s0Kma0VR0AWGlichRwFfCC0-vpZK1jrPoEOAnBq8fcqRoClLsQAvD_BwE
- https://www.sciencebooksonline.info/physics.html
- http://www.cambridgeindia.org/
- https://bookboon.com/en/physics-ebooks

(A CENTRAL UNIVERSITY)
DEPARTMENT OF PHYSICS
M.Sc. (Physics): IV Semester

SESSION: 2020-2021 Skill Enhancement Course

PHY SE 423	Digital Communication Skills Development	0	0	2	2	
------------	---	---	---	---	---	--

Objective:

Preamble: This course is designed to expose students to the Digital Communication.

Aims: The course aims to equip students with in electronics communication to know how the signal travels in digital and optical form.

Methodology: Experimental Based.

Signal sampling and reconstructions, amplitude modulation and demodulation, carrier moduclation technique using BPSK method.

PAM, PWM, PPM modulation and demodulation, PCM and demodulation.

Delta/adaptive delta modulation & demodulation, FDM transmitter and receiver.

Outcomes: Students will get expertise in Digital Communication.

Essential Readings:

- 1. Communication Systems-Simon Haykin Third Edition, John Wiley & Sons.
- 2. Advanced Electronics Communication Systems by Wayne Tomasi, Phi Edu.
- 3. Principles of communication systems, by Taub and Schilling, Second Edition TMH
- 4. Communication Electronics by George Kannedy.

Suggested Readings:

1. Operating manuals of experiments.

- https://www.e-booksdirectory.com/listing.php?category=2
- http://www.motionmountain.net/?gclid=CjwKCAjwmq3kBRB_EiwAJkNDp5v8Yy6xK1s0Kma0VR0AWGlichRwFfCC0-vpZK1jrPoEOAnBq8fcqRoClLsQAvD_BwE
- https://www.sciencebooksonline.info/physics.html
- http://www.cambridgeindia.org/
- https://bookboon.com/en/physics-ebooks

(A CENTRAL UNIVERSITY)
DEPARTMENT OF PHYSICS

M.Sc. (Physics): IV Semester SESSION: 2020-2021

Skill Enhancement Course

PHY SE 422:	Seminar	0	0	2	2	1
-------------	---------	---	---	---	---	---

Objective : Objective of the seminar is to get student bold and present themselves in front of audience and keep their views.

This course makes a unique component of the curriculum. It is mandatory for every student to deliver a seminar of approximately 30 minutes duration in the field of chosen specialization and on a topic as decided by the Departmental Seminar Committee. Each and every student would get an opportunity to express his/her level of understanding of various concepts and this, apart from strengthening the subject knowledge, would help students in developing better communication skills and higher level of confidence.

The marks will be awarded by the Seminar Committee on the basis of performance in the seminar and the seminar report submitted by the student.

Outcomes: Students can present themselves.

(A CENTRAL UNIVERSITY)
DEPARTMENT OF PHYSICS

M.Sc. (Physics): IV Semester

SESSION: 2020-2021 Elective Course

		L	T	P	<u>C</u>
PHY EC 421	VLSI Design	3	0	1	4

Objective : To day world is digital. The backbone of electronic gadgets is a small silicon material which is ofter referred as chip. (IC), the designer has to follow many complex procedures for which aone has to a have all the basic design using transistor.

UNIT - I

MOS Transistor, CMOS Logic: The inverter, The NAND gate, Combinational logic, The NOR gate, compound gates, Pass Transistor and Transmission gates, Tristates, Multiplexers, Latches and Flip-Flops.

(Lectures – 9 + Tutorials - 3)

UNIT – II

COMS Fabrication layout: Inverter Cross section, Fabrication process, layout design rules, gate layout, stick diagram. VLSI design flow: Design specification, design entry, functional simulation, planning placement and Routing, Timing simulation.

(Lectures - 9 + Tutorials - 3)

UNIT - III

MOS Transistor Theory: Ideal I-V characteristics, C-V characteristics, non-Ideal I-V effects, DC transfer characteristics.

(Lectures - 9 + Tutorials - 3)

UNIT - IV

COMS Processing Technology: CMOS Technologies: Back ground, water formation, photolithography, wall and channel formation, Silicon dioxide, Isolation, Gate and source/drain formation, contact and metallization.

(Lectures – 9 + Tutorials - 3)

UNIT - V

Layout Design Rule: Design rule back ground, scribe line and other structure, MOSIS and CMOS design rule, Micron Design rule. (Lectures – 9 + Tutorials - 3)

Outcomes:

- 1. Design building blocks of digital IC using gate level modeling.
- 2. Design building blocks of digital IC using dataflow modeling.
- 3. Design stimulers blocks to lest functionality of the design.

Essential Readings:

1. CMOS VLSI Design – Weste, Harris and Banerjee – Pearson Education, 4th Edition,2006 **Suggested Readings:**

2. Modern VLSI Design – Wolf – PHI, 4th Edition, 2009.

3. Basic VLSI Design – Pucknell and Eshraghian, PHI, 3rd Ed., 2007.

- https://www.e-booksdirectory.com/listing.php?category=2
- http://www.motionmountain.net/?gclid=CjwKCAjwmq3kBRB_EiwAJkNDp5v8Yy6xK1s0Kma0V R0AWGlichRwFfCC0-vpZK1jrPoEOAnBq8fcqRoClLsQAvD BwE
- https://www.sciencebooksonline.info/physics.html
- http://www.cambridgeindia.org/
- https://bookboon.com/en/physics-ebooks

(A CENTRAL UNIVERSITY)
DEPARTMENT OF PHYSICS

M.Sc. (Physics: IV Semester SESSION: 2020-2021 Elective Course

		\mathbf{L}	T	P	\mathbf{C}
PHY EC 422	Physics of Nanomaterials	3	1	0	4

Objective : Objective of physics of nano materials is to understand and aware of basic nano materials, its size, synthesis and properties of materials, special carbon and its applications.

UNIT – I:

Introduction to nanomaterials: Introduction to the world of nanostructures, different types of nanomaterials. Size and dimensionality effects. Fermi gas and density of states. Properties dependent on density of states. Quantum confinement-zero, one, two, three dimensional systems, potential wells, tunneling of a particle through a potential barrier. Structure and bonding, electronic structures of solids, Excitons. (**Lectures – 9 + Tutorials - 3**)

UNIT – II

Synthesis of nanomaterials: Top-down and bottom-up approach.

Mechanical methods, (High energy ball mill, melt mixing) methods based on evaporation, physical vapour deposition with consolidation, Ionized cluser beam deposition. Pulse laser deposition, sputter deposition, (DC, RF) Electric arc deposition, chemical vapour deposition, Langmuir Hinshelwood and Elay Riedel mechanicsum,.

(Lectures - 9 + Tutorials - 3)

UNIT - III

Properties of Nanomaterials : Size dependent properties of nanomaterials, mechanical (hardness testing Vicker's hardness and Mohs Scale test) and structural properties, melting of nanoparticles, electrical conductivity, optical and magnetic properties.

(Lectures -9 + Tutorials - 3)

UNIT - IV

Special Carbon: New carbon structures, carbon clusters, discovery of C_{60} , structure of C_{60} Alkali doped C_{60} , fullerenes, carbon nanotube SWNT, MWNTS, Application of carbon nanotube: field emission and shielding, computers, fuel cells, chemical sensors, catalysis, mechanical reinforcement.

(Lectures - 9 + Tutorials - 3)

UNIT - V

Applications of Nanotechnology: Introduction, applications in electronics, energy, automobiles, nano cosmetics, textiles, space and defense, nanosensors, domestic appliances, drug delivery and cancer therapy, tissue engineering, nanotechnology and environment.

(Lectures - 9 + Tutorials - 3)

Outcomes: Students will get experiment as well as theoretical exposure of synthesis of materials and study various optical, electrical and magnetic properties and its application in various fields.

Essential Readings:

- 1. Introduction to Nano Science and Nano Technology K.K. Chattopadhyay & AN Banerjee PHI Pvt. Ltd.,2009.
- 2. Nano technology: Principles and practices Sulabha K. Kulkarni, Capital Publisher Co., 2015.
- 3. Introduction to nano technology: Charles P. Poole, Jr. Frank J. Owen, Wiley, Interscience Pub., May, 2003.
- 4. Nanostructures & Nanomaterials Synthesis Properties & Applications. Guozhong Cao, Imperials College Press London. 2004

(A CENTRAL UNIVERSITY)
DEPARTMENT OF PHYSICS

Suggested Readings:

- 5. Nano: The Essentials. T. Pradeep, McGraw Hill Education.20/01/2007
- 6. Handbook of Nanostructures: Materials and nanotechnology, H.S. Nalwa Vol 1-5, Academic Press, Bostan., I Ed.,Oct., 1999.
- 7. Fundamental of Physics- Rashnik Halliday, Walker, Willy 6th Edition. ,2015.

- https://www.e-booksdirectory.com/listing.php?category=2
- http://www.motionmountain.net/?gclid=CjwKCAjwmq3kBRB_EiwAJkNDp5v8Yy6xK1s0Kma0VR0AWGlichRwFfCC0-vpZK1jrPoEOAnBq8fcqRoClLsQAvD_BwE
- https://www.sciencebooksonline.info/physics.html
- http://www.cambridgeindia.org/
- https://bookboon.com/en/physics-ebooks

(A CENTRAL UNIVERSITY)
DEPARTMENT OF PHYSICS

M.Sc. (Physics): IV Semester SESSION: 2020-2021 Elective Course

		${f L}$	\mathbf{T}	P	\mathbf{C}
PHY EC 423	Plasma Physics	3	1	0	4

Objectives: The course is designed to provide fundamental knowledge of plasma physics having various applications in laboratory, space and astrophysical plasma. This paper will also prepare students for basic concepts of plasma physics used in space communication and satellite launching.

UNIT - I

Introduction to the plasma state, Elementary concepts and definition of temperature, mean velocity and flux and other plasma parameters, occurrence and importance of plasma for various applications, Status, problems and technological requirements of thermo-nuclear fusion.

(Lectures - 9 + Tutorials - 3)

UNIT - II

Production of plasma in the laboratory, physics of glow discharge, electron emission, ionization and breakdown of gases, Townsend discharge and the evolution of discharge, I-V characteristic of discharge, Paschem's law and different regimes of E/P in a discharge.

(Lectures - 9 + Tutorials - 3)

UNIT - III

Plasma diagnostics, single probe and double probe measurements of density and temperature, energy analyzers, magnetic probes and optical diagnostic (preliminary concepts.).

(Lectures - 9 + Tutorials - 3)

UNIT - IV

Distribution function and Liouville's equation, Boltzmann and Vlasov equations, derivation of moment equations from Boltzmann equation.

(Lectures – 9 + Tutorials - 3)

UNIT - V

Macroscopic parameters of plasma, two and one fluid equations for plasma, MHD approximations commonly used in one fluid equations and simplified one fluid and MHD equations.

(Lectures - 9 + Tutorials - 3)

Outcome: Student can apply the advanced concept of plasma physics in various laboratory and space physics applications.

Essential Readings:

1. Introduction to Plasma Physics : F.F. Chen, Plenum Press, New-York I Edition, 1994...

2. Principles of Plasma Physics : N.A. Krall and A.W. Trivelpiece, Mc-Graw Hill Kogakusha, Ist Edition,

New Delhi, 1973.

Introduction to Plasma Theory,
 Plasma Dynamics
 D.R. Nicholson, John-Wiley & Sons, New-York, Ist Edition 1983
 T.J.M. Boyd & J.J. Sanderson, Thomas Nelson (Australia)

5. The Theory of Plasma waves, : T.H. Stix, Mc Graw Hill Book company, INC, , Ist Edition New-York

1992

Suggested Readings:

The Plasma State : J.L. Shohet Academic press., Ist Edition 1971
 Introduction to Plasma Physics : M. Uman, Mc Graw Hill, Ist Edition 1964.
 Principles of plasma diagnostic, : I.H. Hutchison, Cambridge University Press.

(A CENTRAL UNIVERSITY)
DEPARTMENT OF PHYSICS

Suggested e-books:

- 1. Introduction to plasma theory by D.R. Nicholson, Wiley Publication.
- 2. Fundamentals of Plasma Physics by P.M. Bellan.

- https://www.e-booksdirectory.com/listing.php?category=2
- http://www.motionmountain.net/?gclid=CjwKCAjwmq3kBRB_EiwAJkNDp5v8Yy6xK1s0Kma0VR0AWGlichRwFfCC0-vpZK1jrPoEOAnBq8fcqRoClLsQAvD_BwE
- https://www.sciencebooksonline.info/physics.html
- http://www.cambridgeindia.org/
- https://bookboon.com/en/physics-ebooks

(A CENTRAL UNIVERSITY)
DEPARTMENT OF PHYSICS

M.Sc. (Physics): IV Semester SESSION: 2020-2021 Elective Course

PHY EC 425	Project	Self study	4
------------	---------	------------	---

Objective: Aim of the project is that students will get exposure of how to do project and write the dissertation.

Each student will be allocated a (departmental) faculty member as project supervisor on the topic of his/her interest. For realization of meaningful projects, longer duration will be provided by way of assignments of projects by the end of third semester.

The students are required to submit a dissertation on the project of the topic assigned to him/her under the supervision of a faculty member allocated to him/her by the department. The grading for the project will be based on the progression of the project during the semester and final submission of the dissertation. The internal assessment of 40 marks will be based on the progression of the assigned project to be jointly evaluated by a Board of Examiners appointed for the purpose. The Board of Examiners will be appointed by the Board of Studies and it will consist of the Supervisor of the project concerned and another faculty member of the Department.

The end semester examination of **60** marks will be split in two parts (Project submission: **40** marks & viva voce: **20** marks) for the evaluation of the dissertation and viva on it and shall be conducted on the lines as mentioned in the ordinances for the purpose.

Outcomes : Students will get expedite with theoretical / experimental exposure while doing the project.