Department of Physics						
Class	Subject	Semester	Course Code	Course Title	Marks	Credit
B.Sc.	Physics	I	PHYCC 111	Mechanics	Mid Sem 40 End Sem 60	04

Course Objectives: To learn vector analysis and differential equations and their uses in Physics. To have knowledge about different types of motion, properties of matter. To learn relativity and relativistic motion.

Course Learning Outcomes:

Upon successful completion of the course, the student:

CO1: Will have idea about vector algebra and differential equations and their uses in Physics.

CO2: Will have knowledge about laws of motion and conservation laws.

CO3: Will have knowledge about rotational motion, gravitation, geosynchronous orbit, GPS.

CO4: Will be well acquainted with properties of matter like elasticity and viscosity.

CO5: Will be able to understand oscillatory motion and special theory of relativity.

Facili	Facilitating the achievement of Course Learning Outcomes							
Unit	Course Learning Outcomes	Teaching and learning Activity	Assessment Tasks					
1	CO1: Will have knowledge about vector algebra and differential equations and their uses in Physics.	and a sec	Student presentation and group discussion. Objective type, short and long type questions.					
2	CO2: Will have idea about laws of motion, conservation laws and central force. Use of black board for drawing diagrams, explanation and discussion. Extended Q&A sessions.	motion, central force, conservation laws, motion of rocket. Use of black board for	Student presentation and group discussion. Objective type, short and long type questions.					
3	CO3: Will learn about rotational motion, gravitation, satellite, geosynchronous orbit, GPS.	Discussion on rotational motion, gravitational motion. Use of black board for drawing diagrams, explanation and discussion. Extended Q&A sessions.	Student presentation and group discussion. Objective type, short and long type questions.					
4	properties of matter like elasticity	Discussion on various properties of matter. Use of black board for drawing diagrams, explanation and discussion. Extended Q&A sessions.	Student presentation and group discussion. Objective type, short and long type questions.					
5	CO5: Will learn about oscillatory motion and special theory of relativity.	Discussion on various oscillatory motion and special theory of relativity. Use of black board for drawing diagrams, explanation and discussion. Extended Q&A sessions.	Student presentation and group discussion. Objective type, short and long type questions.					

Department of Physics						
Class	Subject	Semester	CourseCode	Course Title	Marks	Credit
B.Sc.	Physics	I	PHY CC 112	Mechanics Lab	Mid Sem 40 End Sem 60	02

Course Objectives:

To learn the use of basic instruments like vernier caliper, screw gauge and travelling microscope. To determine various properties of matter like rigidity, elasticity. T

Course Learning Outcomes:

Upon successful completion of the course, the student:

Will have idea about basic instruments like vernier caliper, screw gauge and travelling microscope and their practical use. Will learn about various properties of matter, can find out the value of g.

Objectives and Learning Outcomes of B.Sc. (Physics)

Department of Physics								
Class	Class Subject Semester Course Course Title Marks Credit							
B.Sc.	Physics	II	PHY- CC-211	ELECTRICITY AND MAGNETISM	100	04		

Course Objectives:

Students will learn the basic fundamental knowledge of Electricity and Magnetism which have vast applications in all area of science and technology. Students will be familiar with static electricity, current electricity, capacitor, Inductor, Dielectric materials, laws of magnetism and Maxwell's Equations.

Course Learning Outcomes:

Upon successful completion of the course, the student:

CO1: The students able to describe the fundamentals concepts of Vector Analysis. The details of scaler and vector potentials, Maxwell's equations and fields of charged particles in uniform motion. The vector integrals are the basic tool to understand the electrostatic and electromagnetic theory of waves.

CO2: This unit able to describe the various theorems of electrostatics and electric fields. The depth knowledge of electricity and magnetism. The basic fundamentals of capacitors, condensers and electric dipoles.

CO3: Students will get the knowledge about the dielectric and steady currents. They will also gain the deep knowledge about the LCR circuits polarizations, displacements vectors and analysis of multiloop circuits.

CO4: This unit able to describe the basic laws of currents and magnetism. Biot-Savart's law and its applications, Ampere's circuital laws and divergence and curl of magnetic field. Also explains the magnetic properties of materials. Some magnetic constants as magnetic induction permeability, magnetic susceptibility is elaborated in details.

CO5: The students able to describe the fundamentals of electromagnetic induction and waves theory. The details of Maxwell's equations and fields of charged particles in uniform motion. The Maxwell's equations are the basic tool to understand the electrostatic and electromagnetic theory of waves. The details of electromagnetic wave propagations through vacuum and isotropic dielectric medium as well as transverse nature of electromagnetic waves.

Unit	Course Learning Outcomes	Teaching and learning Activity	Assessment Tasks
1	CO1:The students able to		
	describe the fundamentals		Unit test, group
	concepts of Vector Analysis. The	Using black/white board for	discussions and
	details of scaler and vector	explaining the each and every	tutorials are exercised.
	potentials, Maxwell's equations	mathematical formula and basic	The objectives, long or
	and fields of charged particles in	theory. Discussion with students is	short type questions are
	uniform motion. The vector	done as required. The display mode	done.
	integrals are the basic tool to	as Audio/Visual presentation is also	
	understand the electrostatic and	exercised.	
	electromagnetic theory of waves.		
2	CO2: This unit able to describe		
	the various theorems of	Using white /black board	Unit test,
	electrostatics and electric fields.	for explaining the each and every	tutorials, objectives
	The depth knowledge of	concept, mathematical formula	and long, short type
	electricity and magnetism. The	and basic theory. Also using the	questions exercised.
	basic fundamentals of	internet and multimedia to	
	capacitors, condensers and	explain recent information	
	electric dipoles.	regarding the topics.	

3	CO3:Students will get the knowledge about the dielectric and steady currents. They will also gain the deep knowledge about the LCR circuits polarizations, displacements vectors and analysis of multiloop circuits.	Through the internet and power point presentation as well as group discussions. Using white / black board for explanations.	Posters presentations, group discussions and objective type short and long answer questions.
4	CO4: This unit able to describe the basic laws of currents and magnetism. Biot-Savart's law and its applications, Ampere's circuital laws and divergence and curl of magnetic field. Also explains the magnetic properties of materials. Some magnetic constants as magnetic induction permeability, magnetic susceptibility is elaborated in details.	Using white / black board for explaining the each and every mathematical formula and basic theory. Also use multimedia for clarify the basic concepts.	By the student's poster presentations, groupdiscussions, and objective type short and long answer questions.
5	CO5: The students able to describe the fundamentals of electromagnetic induction and waves theory. The details of Maxwell's equations and fields of charged particles in uniform motion. The Maxwell's equations are the basic tool to understand the electrostatic and electromagnetic theory of waves. The details of electromagnetic wave propagations through vacuum and isotropic dielectric medium as well as transverse nature of electromagnetic waves.	Using board for explaining the each and every mathematical formula and basic theory. Also use short movies for explain the Faraday's laws of inductions, Lenz's Law and electromagnetic wave propagations.	By power point presentations and group discussions, objective type short and long answer questions. The regular seminar also asses the basic knowledge of the students.

Scheme of B.Sc. Program in Physics under CBCS System

Objectives and Learning Outcomes of B.Sc. (Physics)

Department of Physics								
Class Sub	bject S	Semester	Course Code	Course Title	Marks	Credit		
B.Sc. Phy	ysics 1	III	PHY CC 311	Thermal Physics and Statistical Mechanics	Mid Sem 40 End Sem 60	04		

Course Objectives:

The objective of this course is to develop a working knowledge of laws and methods of thermodynamics and elementary statistical mechanics and to use this knowledge to explore various applications many of these applications related to physics of condensed matter.

Course Learning Outcomes:

Upon successful completion of the course, the student:

CO1: Will describe laws of thermal physics; zeroth law and first law of thermodynamics. Also applications of first law of thermodynamics to establish various thermodynamic relations are described in this unit.

CO2: Will explains reversible and irreversible process, entropy and second law of thermodynamics. This unit also defines efficiency of heat engine so that Carnot engine which is designed by applications of adiabatic and isothermal process.

CO3: Will explains thermodynamics potentials like Enthalpy, Gibbs, Helmholtz and Internal Energy functions. It also explains Maxwell's relations & applications to calculate Joule-Thompson Effect, Clausius- Clapeyron Equation, Expression for (CP – Cv), CP/Cv, TdS equations.

CO4: Will learn about basic concept of black body radiation and its explanation by Wien's distribution law, Rayleigh-Jeans Law, Stefan Boltzmann Law and Planck's law.

CO5: Will learn statistical mechanics which explains phase space, Microstate and Macrostate. This unit also explains Maxwell-Boltzmann law - distribution of velocity - Quantum statistics - Fermi-Dirac distribution law - electron gas - Bose-Einstein distribution law - photon gas - comparison of three statistics.

Unit	Course Learning	Teaching and learning	AssessmentTasks*
	Outcomes	Activity	
1	First unit of this paper describe	In the classroom, power	Student presentation and
	laws of thermal physics; zeroth	point presentation will	group discussion on the
	law and first law of	be use to explain law of	various physical process
	thermodynamics. Also	thermodynamics and its	which are example of
	applications of first law of	examples. White board	zeroth law.
	thermodynamics to establish	will be use to derive	
	various thermodynamic relations	equation of	
	are described in this unit.	thermodynamics.	
2	Second unit of this paper	In the classroom, power	Student presentation
	explains reversible and	point presentation will	and group discussion
	irreversible process, entropy	be use to display	on examples of
	and second law of	examples of adiabatic	reversible and
	thermodynamics. This unit also	process and isothermal	irreversible process. Q
	defines efficiency of heat	process. White board	& A session will
	engine so that Carnot engine	will be use to derive	enhance the
	which is designed by	expression for	understanding.
	applications of adiabatic and	efficiency of engine and	
	isothermal process.	to solve numerical	
		problems.	

3	This unit explains thermodynamics potentials like Enthalpy, Gibbs, Helmholtz and Internal Energy functions. It also explains Maxwell's relations & applications to calculate Joule-Thompson Effect, Clausius-Clapeyron Equation, Expression for (CP – Cv), CP/Cv, TdS equations.	In the classroom, power point presentation will be use to display examples of thermodynamic potentials. Q & A session will enhance the understanding.	Student presentation and group discussion on application of Joule- Thompson Effect and Clausius- Clapeyron Equation.
4	This unit will address basic concept of black body radiation and its explanation by Wien's distribution law, Rayleigh-Jeans Law, Stefan Boltzmann Law and Planck's law.	In the classroom, power point presentation will be use to explain spectra of black body radiation. White board will be use to derive various laws.	Student presentation and group discussion about limitations of law so that other law is required.
5	This unit is a part of statistical mechanics in which student will learn about phase space, Microstate and Macrostate. This unit also explain Maxwell-Boltzmann law - distribution of velocity - Quantum statistics - Fermi-Dirac distribution law - electron gas - Bose-Einstein distribution law - photon gas - comparison of three statistics.	In the classroom, power point presentation will be use to explain and distinguish various statistical mechanics. White board will be use to derive various laws.	Student presentation and group discussion about statistics, identical particle and distinguish particles. Q & A session will be conducted to test understanding of students.

^{*}Assessment tasks listed here are indicative, and may vary.

Department of Physics							
Class	Class Subject Semester Course Code Course Title Marks Credit						
B.Sc.	Physics	III	PHY CC 312	Thermal Physics	Mid Sem 40	02	
				and Statistical Mechanics Lab	End Sem 60		

Course Objectives:

The objective of this course is to develop a working knowledge of laws and methods of thermodynamics and elementary statistical mechanics and to use this knowledge to explore various applications many of these applications related to physics of condensed matter.

Course Learning Outcomes:

Upon successful completion of the course, the student:

CO1: Will learn to calculate Mechanical Equivalent of Heat by Callender and Barne's constant flow method.

CO2: Will learn to calculate Planck's constant using black body radiation.

CO3: Will learn to calculate Stefan's Constant..

CO4: Will learn to do experiments to calculate thermal conductivity of conductor and bad conductor by Searle's Apparatus, Angstrom's Method and Lee and Charlton's disc method.

CO5: Will learn effect of temperature on resistant, electro-motive force, analysis of cooling as function of time and resistance temperature device will be studied and calculated by the students.

	litating the achievement of Course		
Exp.		Teaching and learning	Assessment
No.	Outcomes	Activity	Tasks*
	First experiment of this paper is to calculate Mechanical Equivalent of Heat by Callender and Barne's constant flow method.	Students will perform experiment and take observation to calculate Mechanical Equivalent of Heat.	Student will write complete experiment with their observation and calculation in their practical record.
2	In this experiment student will calculate Planck's constant using black body radiation.	Students will perform experiment and take observation to calculate Planck constant.	Student will write complete experiment with their observation and calculation in their practical record.
3	In this experiment student will calculate Stefan's Constant.	Students will perform experiment and take observation to calculate Stefan's constant.	Student will write complete experiment with their observation and calculation in their practical record.
4,5,	These experiments gives thermal conductivity of conductor and bad conductor by Searle's Apparatus, Angstrom's Method and Lee and Charlton's disc method.	Students will perform experiment and take observation to calculate thermal conductivity.	Student will write complete experiment with their observation and calculation in their practical record.
5, 6, 7, 8	The effect of temperature on resistant, electro-motive force, analysis of cooling as function of time and resistance temperature device will be studied and calculated by the students.	Students will perform experiment and take observation to calculate temperature-resistance-time and emfs.	Student will write complete experiment with their observation and calculation in their practical record.

Scheme of B.Sc. Program in Physics under CBCS System

Objectives and Learning Outcomes of B.Sc. (Physics)

Department of Physics							
Class	Subject	Semester	Course Code	Course Title	Marks	Credit	
B.Sc.	Physics	III	PHY SE 311	Electrical Circuits and Network Skills	Mid Sem 40 End Sem 60	02	

Course Objectives:

The objective of the course is to enable the students to design and trouble shoots the electrical circuits networks and appliances through hands-on mode basic electricity principal: Voltage, current, resistance, and power ohms law, AC and DC electricity. Students will enable to design and trouble shoots the electrical circuits, networks and appliances through hands-on mode.

Course Learning Outcomes:

Upon successful completion of the course, the student:

CO1: This unit will describe voltage, current, resistance and power and its measurement by multimeter, voltmeter and ammeter. It also introduces relation between voltage and current by Ohm's law. Again in this unit student will learn about series, parallel, and series-parallel combinations.

CO2: In this unit student will learn about inductor, capacitor and relation between them. Student will also learn to calculate voltage drop across circuit elements. Again student will get knowledge of single-phase and three-phase alternating current sources.

CO3: In this unit student will learn principle and working of AC/DC generators. Again student will learn why step-up and step-down transformer would be used. In next part student will learn principle and working of Single-phase, three-phase & DC motors.

CO4: In this unit student will learn Electrical Protection devices as Relays, Fuses, disconnect switches, Circuit breakers, Overload devices, Ground-fault protection, Grounding and isolating, Phase reversal, Surge protection. Interfacing DC or AC sources to control elements (relay protection device)

CO5: In this unit student will learn about various types of electrical Wiring. The voltage drop and losses across cables and conductors calculation will also instruct to the students. Students get knowledge of devices which can be used to measure current, voltage, power in DC and AC circuits.

Exp.	Course Learning	Teaching and learning	Assessment
No.	Outcomes	Activity	Tasks*
1	This unit will describe voltage, current, resistance and power and its measurement by multimeter, voltmeter and ammeter. It also introduces relation between voltage and current by Ohm's law. Again in this unit student will learn about series, parallel, and series-parallel combinations.	Voltmeter, ammeter and multi-meter uses will teach to the student. White board will be uses to establish equation for series and parallel combination of resistance.	Student presentation and group discussion on measurement devices and difference between them are consist in this unit.
2	In this unit student will learn about inductor, capacitor and relation between them. Student will also learn to calculate voltage drop across circuit elements. Again student will get knowledge of single-phase and three-phase alternating current sources.	will be demonstrated to the students.	Student presentation and group discussion on roll of different circuit elements. Student will also discuss ways to save energy and money.

3	In this unit student will learn principle and working of AC/DC generators. Again student will learn why step-up and step-down transformer would be used. In next part student will learn principle and working of Single-phase, three-phase & DC motors.	In the classroom, power point presentation will be use to display electricity generator and motor. White board will be use to write expression for voltage and current.	Student presentation and group discussion on uses of motor and generator.
4	In this unit student will learn Electrical Protection devices as Relays, Fuses, disconnect switches, Circuit breakers, Overload devices, Ground-fault protection, Grounding and isolating, Phase reversal, Surge protection. Interfacing DC or AC sources to control elements (relay protection device)	In the classroom, power point presentation will be use to display electrical protection devices. Some protection devices like Fuses, disconnect switches, Circuit breakers will be demonstrated in the classroom.	Student presentation and group discussion on roll and limitations of circuit elements.
5	In this unit student will learn about various types of electrical Wiring. The voltage drop and losses across cables and conductors calculation will also instruct to the students. Students get knowledge of devices which can be used to measure current, voltage, power in DC and AC circuits.	point presentation will be use to demonstrate uses of electrical wiring on the basis of load.	Student presentation and group discussion on which type of cable in their home. What are their limitations. Q & A session will also be conducted

^{*}Assessment tasks listed here are indicative, and may vary.

Department of Physics						
Class	Class Subject Semester Course Code Course Title Marks Credit					Credit
B.Sc.	Physics	IV	PHY CC 411	WAVES AND OPTICS	MID SEM 40 END SEM 60	04

Course Objectives: Objective of this course is to make students familiar with wave and optics. By the end of this course students shall know the basic laws of waves and oscillation and their application in research and technology. They will also be able to tell about the basic laws of light.

Course Learning Outcomes:

Upon successful completion of the course, the student:

CO1: Will be able to learn Linear and Superposition principle in Harmonic oscillations and understand to apply Graphical and analytical methods along with the applications of Lissajous figures

CO2: Will be learning about transverse, travelling and standing waves on a string, Group and phase velocity and other aspects of Sound waves like Simple harmonic motion Fourier's theorem, Intensity levels, musical notes etc.

CO3: Will be able to learn about the sound and interference of light. Here students will learn about the acoustics, reverberation, and Interference

CO4: Will be able to learn about the kind of fringes observed during the interference of light. It will also make students about the Michelson Interferometer.

CO5: Will have a good understanding of Diffraction and Polarization. In Diffraction they will learn about Fresnel and Fraunhofer diffraction. And in polarization they will study circular and elliptical polarization.

	taining the acinevement of Cours		
Unit	Course Learning	Teaching and learning Activity	Assessment
	Outcomes		Tasks*
1.	Will be able to learn Linear and Superposition principle in Harmonic oscillations and understand to apply Graphical and analytical methods along with the applications of Lissajous figures	Audio-visual presentation as teaching aid for making students understand various topics like graphical and analytical methods and how they can use these techniques for solving problems	Students will be advised to find more applications of these techniques. Objective types, short answer type and long answer type questions.
2.	Will be learning about transverse, travelling and standing waves on a string, Group and phase velocity and other aspects of Sound waves like Simple harmonic motion Fourier's theorem, Intensity levels, musical notes etc.	Audio-visual presentation as teaching aid for understanding different things about sound. Use of white/ black board for drawing the complex diagram of saw tooth and square in simple form.	Students will be advised to find ways to these theorems in different problems. Objective types, short answer type and long answer type questions.

	CO2. W'11 11.1 / 1	A 1'' 1	T1
3.	CO3: Will be able to learn about the sound and interference of light. Here students will learn about the acoustics, reverberation, and Interference	Audio-visual presentation as teaching aid for understanding the various properties of Light and interference of it. During the classes students will be encouraged to discuss among themselves. They will be taught about the acoustics of sound and interference of light where they will understand the importance of Young's double slit experiment and Interference in Thin Films.	There are assignments assigned to different students for different topics and the discussion of those assignments in the class. Objective types, short answer type and log answer type questions
4.	CO4: Will be able to learn about the kind of fringes observed during the interference of light. It will also make students about the Michelson Interferometer.	Black/White board based teaching aid with notes about the Newton rings and michelson interferometer. They will be able to measure the refractive index and wavelength. Students shall also be able to determine the wavelength and wavelength difference from michelson interferometer	Students are encouraged to discuss the implication of interference and everyday examples of it and calculate the wavelengths of light. Objective types, short answer type and long answer type questions
5.	CO5: Will have a good understanding of Diffraction and Polarization. In Diffraction they will learn about Fresnel and Fraunhofer diffraction. And in polarization they will study circular and elliptical polarization.	Audio-visual presentation as teaching aid along with explanation by hand on Black/ White board about Fraunhofer diffraction, Single slit; Double Slit. Multiple slits & Diffraction grating. Fresnel Diffraction: Half-period zones. Zone plate. Fresnel Diffraction pattern of a straight edge as well. They will also be taught about polarization, which includes transverse nature of light waves. Plane polarized light production and analysis. Circular and elliptical polarization.	1 , 6' 1

Department of Physics							
Class	Class Subject Semester Course Code Course Title Marks Credit						
B.Sc.	Physics	IV	PHY CC 412	WAVES AND	MID SEM 40	02	
				OPTICS LAB	END SEM 60		

Course Objectives: The main objective of this course is to introduce students with the evidence for the laws of wave optics. Students will also learn to confirm the wave nature of light through optics experiments.

Course Learning Outcomes:

Upon successful completion of the course, the student:

CO: Will be able to observe the law of wave optics through experiments like, investigating the motion of coupled oscillators, study Lissajous Figures, determine refractive index using sodium light and finding dispersive power using Mercury light. They will also be able to confirm the wave nature of light by performing experiments to determine wavelength of light using Newton's rings, Fresnel biprism and using diffraction of single slit which will also enable them to align the experiments, spectrometer and use Laser.

Unit	Course Learning	Teaching and learning Activity	Assessment
	Outcomes		Tasks*
1	Will be able to observe the law	Presentation and black/white board	Students will
	of wave optics through	will be used to explain these	have to go
	experiments like, investigating	experiments to students. Live	through Viva
	the motion of coupled	demonstrations will also be	and perform the
	oscillators, study Lissajous	provided to them so they can	assigned
	Figures, determine refractive	understand the technicality of the	experiments.
	index using sodium light and	experiments well.	Short, Objective
	finding dispersive power using		type questions
	Mercury light. They will also		
	be able to confirm the wave		
	nature of light by performing		
	experiments to determine		
	wavelength of light using		
	Newton's rings, Fresnel		
	biprism and using diffraction of		
	single slit which will also		
	enable them to align the		
	experiments, spectrometer and		
	use Laser.		

^{*}Assessment tasks listed here are indicative, and may vary

Objectives and Learning Outcomes of M.Sc. (Physics)

Department of Physics						
Class	Subject	Semester	Course Code	Course Title	Marks	Credit
B.Sc.	Physics	V	PHY SE 511	APPLIED OPTICS	MID SEM 40 END SEM 60	02

Course Objectives: Major objective of this paper is to instill students with the basic knowledge of LASER and optical fiber. By the end of this course they should be able to apply that knowledge in spectroscopy and holography. Since theory contains only qualitative studies, students will have to perform at least five experiments.

Course Learning Outcomes:

Upon successful completion of the course, the student:

CO1: Will be able to help students to understand the theory of Laser and its different properties as well as help them to learn different lasers such as He-Ne Laser and semiconducting Laser and their uses in daily life

CO2: Will be able gain knowledge about frequency filtering and Fourier transform of thin lens

CO3: Will be able to help students to understand the importance of Fourier transform spectroscopy in various applications such as NMR, remote sensing and forensic science

CO4: Will allow students to learn about Hologram and the application of holography in microscopy

CO5: Will be able to build the understanding about Optic fibres and how light propagates in an optic fibre. They shall also learn about single and multi mode fibres and attenuation in them.

Unit	Course Learning Outcomes	Teaching and learning Activity	Assessment Tasks
Unit 1	Course Learning Outcomes CO1: Will be able to help students to understand the theory of Laser and its different properties as well as help them to learn different lasers such as He-Ne Laser and semiconducting Laser and their uses in daily life	Audio-visual presentation as teaching aid for understanding the various properties of LASER and its application. Use of white/ black board for	There are assignments assigned to different students for different topics and the discussion of those assignments in the class. They will have to find the polarization angle of laser light using polarizer and analyzer Objective types,
		Semiconducting LASER.	Objective types, short answer type and log answer type questions

2	CO2: Will be able gain knowledge about frequency filtering and Fourier transform of thin lens	Black/White board based teaching aid with notes and drawing diagrams to show how Fourier transform is applied in a thin lens along with this practical examples are also given	Students will be advised to find more applications of these techniques. Objective types, short answer type and long answer type questions.
3	CO3: Will be able to help students to understand the importance of Fourier transform spectroscopy in various applications such as NMR, remote sensing and forensic science	Audio-visual presentation as teaching aid for understanding various applications of Fourier transform spectroscopy especially in major techniques such as atmospheric remote sensing, NMR spectrometry and forensic science. They are also taught about the importance of these techniques in modern research and technology	Students are encouraged to discuss and come up with their own ideas to use the technology. They will have to perform optical image addition and subtraction Objective
4	CO4: Will allow students to learn about Hologram and the application of holography in microscopy	Black/ White board and audio visual presentation to gain knowledge about the theory and principle of holography. They will also learn about the different types of Holograms. They will also learn how holography is used in microscopy and the workings of white light reflection hologram.	Students are encouraged to read articles and watch videos of Holograms and their application. They shall be asked to record and reconstruct holograms. Objective types, short answer type and long answer type questions
5	CO5: Will be able to build the understanding about Optic fibres and how light propagates in an optic fibre. They shall also learn about single and multi mode fibres and attenuation in them.	Black/ white board teaching to make students learn about Optic fibres and their properties. Students will also learn how these optic fibres are used and what role does the unique propagation of light inside optic fibre plays in its application. Single and multi mode fibre and their importance will also be taught to the students. Attenuation limit of Optic fibre will be discussed among the students	Students will be asked to find out various fields where optic fibre is essential and required in day too day life. They shall be asked to perform and find out the numerical aperture of the optic fibre. Objective types, short answer type and long answer type questions

Objectives and Learning Outcomes of B.Sc. (Physics)

Department of Physics							
Class	Class Subject Semester Course Course Title Marks Credit						Credit
B.Sc.	Physics	V	PHY EC 511	Digital and Circuits	Analog And	Mid Sem 40 Ens Sem 60	04
				Instrumentation			

Course Objectives:

To have idea about the basics of electronics so that students can use the knowledge in electronics and electrical circuits.

Course Learning Outcomes:

Upon successful completion of the course, the student:

CO1: Will be able to learn about digital circuits, can differentiate between analog and digital circuits. Will be able to understand binary numbers and its use in digital circuits.

CO2: Will have idea about diodes and semiconductor devices based on diodes i.e. LEDS, Solar cells, photodiodes etc.

CO3: Will have idea about transistors and various types of amplifiers and their uses.

CO4: Will learn about CRO and its use in various electronic circuits.

CO5: Will learn about rectifiers, filters and their use. Will learn about voltage regulation in practical applications.

raciii	tating the achievement of Cours	e Learning Outcomes	
Unit	Course Learning Outcomes	Teaching and learning Activity	Assessment Tasks
1		Discussion on analog and digital	Student presentation
	digital circuits, can differentiate	circits. Extended Q&A sessions.	and group discussion.
	between analog and digital	Use of black board for drawing	Objective type, short
	circuits. Will be able to	circuit diagrams and explanation	and long questions.
	understand binary numbers and	of operations of different circuits.	
	its use in digital circuits.		
2	CO2: Will have idea about	Use of black board for	Student presentation
	diodes and semiconductor	drawing circuit diagrams and	and group discussion.
	devices based on diodes i.e.	explanation and discussion.	Objective type, short
	LEDS, Solar cells, photodiodes	Extended Q&A sessions.	and long questions.
	etc.		
3	CO3: Will have idea about	Use of black board for drawing	Student presentation
	transistors and various types of	complex circuit diagrams and	and group discussion.
	amplifiers and their uses.	explanation. Extended Q&A	Objective type, short
	_	sessions and discussion.	and long questions.
4	COA: Will learn about CRO and	Black board teaching with notes	Student presentation
-	its use in various electronic	G	and group discussion.
	circuits.	important features of CRO.	Objective type, short
	circuits.	Extended Q&A session to	and long questions.
		involve each student in the class	and long questions.
		room.	
1			

B.Sc. Physics

5	CO5: Will learn about	Black board teaching with	Student presentation
	rectifiers, filters and their use.	notes and drawing diagrams	and group
	Will learn about voltage	to show important features of	discussion.
	regulation in practical	rectifiers, filters and their	Objective type, short
	applications.	use. Extended Q&A session	and long questions.
		to involve each student in the	
		class room.	
1			

Scheme of B.Sc. Program in Physics under CBCS System

Objectives and Learning Outcomes of B.Sc. (Physics)

	Department of Physics							
Class	Subject	Semester	Course Code	Course Title	Marks	Credit		
B.Sc.	Physics	V	PHY EC 512	Digital and Analog Circuits And	Mid Sem 40 End Sem 60	02		
				Instrumentation Lab.				

Course Objectives:

To illustrate the students different analog and digital circuits and their application in practice. To impart knowledge on assessing performance of electronic circuit through monitoring of sensitive parameters.

Course Learning Outcomes:

Upon successful completion of the course, the student:

Will learn how to construct different types of GATES, transistor, diodes and study their characteristics and their practical applications in digital and analog circuits.

Scheme of B.Sc. Program in Physics under CBCS System Objectives and Learning Outcomes of B.Sc. (Physics)

Department of Physics						
Class	Subject	Semester	Course Code	Course Title	Marks	Credit
B.Sc.	Physics	V	PHY EC 513	SOLID STATE PHYSICS	Mid Sem 40 Mid Sem 60	04

- 1. **Course Objectives:** To describe the crystalline structures and diffraction techniques for crystal structure identification.
- 2. To describe to dynamics and different theoretical concepts related to specific heat.
- 3. To describe different properties like magnetic, dielectric and superconducting, semiconducting of solids.

Course Learning Outcomes:

Upon successful completion of the course, the student:

CO1: Will be able to learn general properties of solid, different phase of solid, crystal structure, lattice and their types after that X-ray diffraction techniques and how Bragg's law used in X-ray diffraction. Basic concepts like Brillouin Zones, closed pack structures etc.

CO2: Will get the knowledge about Lattice Vibrations in solid, types of lattice vibration like Linear Monoatomic and Diatomic Chains. They will also gain the knowledge about different laws used in lattice dynamics like Dulong and Petit's Law, Einstein and Debye theories of specific heat of solids, T₃ law, etc.

CO3: Will get an in depth Knowledge about magnetic properties of matter, Quantum Mechanical Treatment of Par magnetism. Curie's law, Weiss's Theory of Ferromagnetism and Ferromagnetic. They will also gain the knowledge about the Domains, B-H Curve and Hysteresis and Energy Loss.

CO4: Will understand the Dielectric Properties of Materials, Classical Theory of Electrical Polarizability, Normal and Anomalous Dispersion etc.

CO5: Will understand difference between the Conductors, Semiconductors and insulators. Types of Semiconductors and Hall Effect. They will also gain the knowledge about superconductors and types, London's Equation and Penetration Depth. Isotope effect etc.

Unit	Course Learning Outcomes	Teaching and learning Activity	Assessment Tasks
1	CO1: Will be able to learn	Audio-Video presentation aid showing the role and major contribution done by different crystal structures. Use of black board for crystal structure	Group discussion about available of crystal structures and related geometries, objectives, short and long questions.

B.Sc. Physics

			B.Sc. Physics
2	knowledge about Lattice Vibrations, types of lattice vibration like Linear Monoatomic and Diatomic Chains. They will also gain the knowledge about different laws used in lattice dynamics like Dulong and Petit's Law, Einstein and Debye theories of specific heat of solids. T3 law	PPT for showing various vibrational images, Black board based teaching with notes and drawing diagrams, derive formulas etc. of lattice vibration like Linear Monoatomic and Diatomic Chains and discuss the laws used in lattice dynamics.	Objective type short and long questions, give assignments of problems.
3	CO3: Will get an in depth Knowledge about magnetic properties of matter, Quantum Mechanical Treatment of Paramagnetism. Curie's law, Weiss's Theory of Ferromagnetism and Ferromagnetic. They will also gain the knowledge about the Domains, B-H Curve and Hysteresis and Energy Loss	Thought provoking questions and student involvement through their participation. Use of black board/ PPT for explanation of magnetic properties of matters, magnetic properties of matterials through normal life examples.	Objective type short and long questions, show some magnetic properties based demonstrations in class etc.
4	Properties of Materials:	The study of dielectric properties of materials, concern the storage and dissipation of electric and magnetic energy in material .The notes and lectures about the dielectric properties, short animation videos to learn the effect of dielectric properties and normal life examples, Q &A sessions about the topics.	Students Presentation and group discussion objective type, short and long questions.
5	CO5: Will understand difference between the Conductors, Semiconductors and insulators. Types of Semiconductors and Hall Effect. They will also gain the knowledge about superconductor and types of superconductor London's Equation and Penetration Depth. Isotope effect.	take part in extended Q & A session during each topic	Poster and ppt presentation, objective type, short and long questions.

Department of Physics							
Class	Subject	Semester	Course Code	Course Title	Marks	Credit	
B.Sc.	Physics	V	PHY EC 514	Solid State Physics Lab	Mid Sem 40 Mid Sem 60	02	

Course Objectives: This course will concentrate on the experimental determination of various common physical properties of the solid state materials, such as dielectric constant magnetic susceptibility, Piezoelectric coefficient, P~E and M~H hysteresis, resistivity, Hall coefficient, etc.

Course Learning Outcomes:

Upon successful completion of the course, the student:

- Will be able to have a sense of various physical properties
- Will be able to know the order of magnitudes, values and units of various types of material properties of solid state materials.

Unit	Course Learning Outcomes	Teaching and learning Activity	Assessment Tasks
	The students will be able to have a	The solid state laboratory	The marks will be
	sense of various physical	equipped with various lab modules	awarded by the course
	properties such as paramagnetic	such as Quinck's susceptibility of	coordinator after
	susceptibility of liquid and solid,	paramagnetic solution, Magnetic	evaluation of each
	Coupling Coefficient of a	susceptibility of Solids, Coupling	experiment based on
	Piezoelectric crystal, Dielectric	Coefficient of a Piezoelectric	the instrument
	Constant Materials, complex	crystal, Dielectric Constant of a	handling, observations,
	dielectric constant, magnetic	dielectric Materials, complex	calculations and
	hysteresis, energy loss, resistivity	dielectric constant and plasma	representation of results
	of semiconductor, hall coefficient	frequency of metal using Surface	of each experiment and
	etc. The students calculate the	Plasmon resonance (SPR),	given viva-voice
	values and units of various types	Refractive index of a dielectric	periodically by students.
	of materials properties. They also	layer using SPR, PE Hysteresis loop	
	able to correlate the theory read	of a Ferroelectric Crystal, BH curve	
	in theory papers and their	of iron and energy loss calculation,	
	practical importance through the	resistivity of a semiconductor (Ge)	
	instrumental operation. The lab	crystal with temperature by four	
	course is provided to the student's	probe method determination of	
	hands on skills about instruments	band gap, Hall coefficient of a	
	handling, operations and find out	semiconductor sample.	
	of results using theoretical		
	concepts and formulae.		
		<u> </u>	

^{*}Assessment tasks listed here are indicative, and may vary.

Department of Physics						
Class	Subject	Semester	Course Code	Course Title	Marks	Credit
B.Sc.	Physics	VI	PHY EC 614	Elements of Modern Physics	Mid Sem 40 End Sem 60	04

Course Objectives:

Aim of this course is to get aware of basic principles of modern physics, wave and particle nature of light. To have knowledge about nucleus, radioactivity, fission, fusion etc.

Course Learning Outcomes:

Upon successful completion of the course, the student:

CO1: Student will learn about Photo-electric effect, Compton scattering, Davisson-Germer experiment to confirm the wave particle nature of light. Student will understand quantization rule and hydrogen atom spectra.

CO2: Will learn about wave-particle duality, Heisenberg's uncertainty principles to understand existence, non existence of various phenomena. Student will learn about Schrodinger equation the basic equation used in quantum mechanics to explain quantum systems, Operators, Wave function etc.

CO3: Will learn about one dimensional systems, their energy eigen values and energy wave function.

CO4: Will learn about basic properties of nucleus, nuclear force, binding energy.

CO5: Will have idea about radioactivity, fission, fusion, nuclear reactors.

Unit	8	Teaching and learning Activity	Assessment Tasks
1	CO1: Student will learn about Photo-electric effect, Compton scattering, Davisson-Germer experiment to confirm the wave particle nature of light. Student will understand quantization rule and hydrogen atom spectra.	quantum mechanics. Extended Q&A sessions. Use of black board for drawing diagrams, explanation and discussion.	Student presentation and group discussion. Objective type, short and long questions.
2	CO2: Will learn about wave- particle duality, Heisenberg's uncertainty principles to understand existence, non existence of various phenomena. Student will learn about Schrodinger equation the basic equation used in quantum mechanics to explain quantum systems, Operators, Wave function etc.	Use of black board for drawing diagrams, explanation and discussion. Extended Q&A sessions.	Student presentation and group discussion. Objective type, short and long questions.

3	CO3: Will learn about one dimensional systems, their energy eigen values and energy wave function.	Use of black board for explanation and discussion. Extended Q&A sessions about the topic.	Student presentation and group discussion. Objective type, short and long questions.
4	CO4: Will learn about basic properties of nucleus, nuclear force, binding energy.	Use of black board for drawing, explanation and discussion. Extended Q&A sessions about the subject.	Student presentation and group discussion. Objective type, short and long questions.
5	CO5: Will have idea about radioactivity, fission, fusion, nuclear reactors.	Use of black board for drawing of diagrams, elaborate explanation and discussion. Extended Q&A sessions about the subject.	Student presentation and group discussion. Objective type, short and long questions.

	Department of Physics							
Class	Subject	Semester	Course Code	Course Title	Marks	Credit		
B.Sc.	Physics	VI	PHY EC 615	ELEMENTS OF MODERN PHYSICS LAB	Mid Sem 40 End Sem 60	02		

Course Objectives: The aim of the course is to find out experimentally the value of various constants, specific charge etc used in theory. To have basic idea about diffraction, photoelectric effect.

Course Learning Outcomes:

Upon successful completion of the course, the student:

Can compare experimental and theoretical value of important constants used frequently in Physics like Planck's constant, Boltzmann constant, Rydberg constant. Will have practical idea about hydrogen spectra. Students will have knowledge about how diffraction pattern can be formed.