


The term "Data Warehouse" was first coined by Bill Inmon in 1990. According to Inmon, a data warehouse is a subject oriented, integrated, time-variant, and non-volatile collection of data. This data helps analysts to take informed decisions in an organization.

An operational database undergoes frequent changes on a daily basis on account of the transactions that take place. Suppose a business executive wants to analyze previous feedback on any data such as a product, a supplier, or any consumer data, then the executive will have no data available to analyze because the previous data has been updated due to transactions.

A data warehouses provides us generalized and consolidated data in multidimensional view. Along with generalized and consolidated view of data, a data warehouses also provides us Online Analytical Processing (OLAP) tools. These tools help us in interactive and effective analysis of data in a multidimensional space. This analysis results in data generalization and data mining.

### Understanding a Data Warehouse

- A data warehouse is a database, which is kept separate from the organization's operational database.
- There is no frequent updating done in a data warehouse.
- It possesses consolidated historical data, which helps the organization to analyze its business.
- A data warehouse helps executives to organize, understand, and use their data to take strategic decisions.
- Data warehouse systems help in the integration of diversity of application systems.
- A data warehouse system helps in consolidated historical data analysis.

# Why a Data Warehouse is Separated from Operational Databases

A data warehouses is kept separate from operational databases due to the following reasons —

- An operational database is constructed for well-known tasks and workloads such as searching particular records, indexing, etc. In contract, data warehouse queries are often complex and they present a general form of data.
- Operational databases support concurrent processing of multiple transactions. Concurrency control and recovery mechanisms are required for operational databases to ensure robustness and consistency of the database.
- An operational database query allows to read and modify operations, while an OLAP query needs only read
  only access of stored data.
- An operational database maintains current data. On the other hand, a data warehouse maintains historical data

#### Data Warehouse Features

The key features of a data warehouse are discussed below -

- **Subject Oriented** A data warehouse is subject oriented because it provides information around a subject rather than the organization's ongoing operations. These subjects can be product, customers, suppliers, sales, revenue, etc. A data warehouse does not focus on the ongoing operations, rather it focuses on modelling and analysis of data for decision making.
- **Integrated** A data warehouse is constructed by integrating data from heterogeneous sources such as relational databases, flat files, etc. This integration enhances the effective analysis of data.
- **Time Variant** The data collected in a data warehouse is identified with a particular time period. The data in a data warehouse provides information from the historical point of view.
- Non-volatile Non-volatile means the previous data is not erased when new data is added to it. A data
  warehouse is kept separate from the operational database and therefore frequent changes in operational
  database is not reflected in the data warehouse.

**Note** – A data warehouse does not require transaction processing, recovery, and concurrency controls, because it is physically stored and separate from the operational database.

## Data Warehouse Applications

As discussed before, a data warehouse helps business executives to organize, analyze, and use their data for decision making. A data warehouse serves as a sole part of a plan-execute-assess "closed-loop" feedback system for the enterprise management. Data warehouses are widely used in the following fields —

- Financial services
- Banking services
- Consumer goods

- Retail sectors
- Controlled manufacturing

## Types of Data Warehouse

Information processing, analytical processing, and data mining are the three types of data warehouse applications that are discussed below -

- Information Processing A data warehouse allows to process the data stored in it. The data can be
  processed by means of querying, basic statistical analysis, reporting using crosstabs, tables, charts, or
  graphs.
- **Analytical Processing** A data warehouse supports analytical processing of the information stored in it. The data can be analyzed by means of basic OLAP operations, including slice-and-dice, drill down, drill up, and pivoting.
- **Data Mining** Data mining supports knowledge discovery by finding hidden patterns and associations, constructing analytical models, performing classification and prediction. These mining results can be presented using the visualization tools.

| Sr.No. | Data Warehouse (OLAP)                                                                           | Operational Database(OLTP)                                           |
|--------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| 1      | It involves historical processing of information.                                               | It involves day-to-day processing.                                   |
| 2      | OLAP systems are used by<br>knowledge workers such as<br>executives, managers, and<br>analysts. | OLTP systems are used by clerks,<br>DBAs, or database professionals. |
| 3      | It is used to analyze the business.                                                             | It is used to run the business.                                      |
| 4      | It focuses on Information out.                                                                  | It focuses on Data in.                                               |
| 5      | It is based on Star Schema,<br>Snowflake Schema, and Fact<br>Constellation Schema.              | It is based on Entity Relationship Model.                            |
| 6      | It focuses on Information out.                                                                  | It is application oriented.                                          |
| 7      | It contains historical data.                                                                    | It contains current data.                                            |
| 8      | It provides summarized and consolidated data.                                                   | It provides primitive and highly detailed data.                      |